معلومات

Solar Sysemt

Solar System

نظام شمسی

google-pagerank

ہمارا نظام شمسی

نظام شمسی سورج اور ان تمام اجرام فلکی کے مجموعے کو کہتے ہیں جو براہ راست یا بالواسطہ طور پر سورج کی ثقلی گرفت میں ہیں۔ اس میں 8 سیارے، ان کے 162 معلوم چاند، 3 شناخت شدہ بونے سیارے(بشمول پلوٹو)، ان کے 4 معلوم چاند اور کروڑوں دوسرے چھوٹے اجرام فلکی شامل ہیں۔ اس آخری زمرے میں سیارچے، کوئپر پٹی کے اجسام، دم دار سیارے، شہاب ثاقب اور بین السیاروی گرد شامل ہیں۔

عام مفہوم میں نظام شمسی کا اچھی طرح معلوم ( مرسوم / charted) حصہ سورج، چار اندرونی سیاروں، سیارچوں، چار بیرونی سیاروں اور کوئپر پٹی پر مشتمل ہے۔ کوئپر پٹی سے پرے کے کافی اجسام بھی نظام شمسی کا ہی حصہ تسلیم کئے جاتے ہیں۔

سورج سے فاصلے کے اعتبار سے سیاروں کی ترتیب یہ ہے: عطارد، زہرہ، زمین، مریخ، مشتری، زحل، یورینس اور نیپچون۔ ان میں سے چھ سیاروں کے گرد ان کے اپنے چھوٹے سیارے گردش کرتے ہیں جنہیں زمین کے چاند کی مناسبت سے چاند ہی کہا جاتا ہے۔ چار بیرونی سیاروں کے گرد چھوٹے چٹانی اجسام، ذرات اور گردوغبار حلقوں کی شکل میں گردش کرتے ہیں۔ تین بونے سیاروں میں پلوٹو، کوئپر پٹی کا سب سے بڑا معلوم جسم؛ سیرس، سیارچوں کے پٹی کا سب سے بڑا جسم؛ اور ارس، جو کہ کوئپر پٹی سے پرے واقع ہے؛ شامل ہیں۔ پلوٹو کو 2006 میں سیارے کے درجہ سے معزول کر دیا گیا۔ دیکھیں۔ پلوٹو کا نظام شمسی سے اخراج

 اصطلاحات

نظام شمسی کے سیارے اور بونے سیارے؛ اجسام کا حجم ان کے اصل حجم کے متناسب دکھایا گیا ہے لیکن ان کا باہمی فاصلہ اصل فاصلے کے متناسب نہیں ہے

سورج کے گرد چکر لگانے والے اجسام کو تین گروہوں میں تقسیم کیا جاتا ہے: سیارے، بونے سیارے (Dwarf planets) اور چھوٹے شمسی اجسام (Small Solar System bodies)۔

سیارہ سورج کے گرد مدار میں گردش کرنے والے کسی ایسے جسم کو کہتے ہیں جو درج ذیل خصوصیات کا حامل ہے

  • اس کی کمیت کم از کم اتنی ہے کہ اپنی کشش ثقل کے باعث ایک کرے کی شکل اختیار کر لے
  • اپنی کشش ثقل سے اپنے مدار اور اس کے آس پاس کے علاقے سے چھوٹے اجسام کو صاف کر چکا ہو

تسلیم شدہ آٹھ سیارے یہ ہیں: عطارد، زہرہ، زمین، مریخ، مشتری، زحل، یورینس، نیپچون

24 اگست 2006 کو بین الاقوامی فلکیاتی اتحاد (International Astronomical Union) نے پہلی بار سیارے کی تعریف کی اور پلوٹو کو سیاروں کی فہرست سے خارج کر دیا۔ پلوٹو کو اب ارس اور سرس کے ساتھ بونے سیاروں کے زمرے میں رکھا گیا ہے۔[1]

بونے سیاروں کے مدار کے آس پاس عموما دوسرے چھوٹے اجسام پاے جاتے ہیں کیونکہ ان کی کشش ثقل اتنی مضبوط نہیں ہوتی کے وہ اپنے پڑوس میں صفائی (Clearing the neighbourhood) کر سکیں۔ کچھ دوسرے اجسام جو مستقبل میں بونے سیارے قرار دیے جا سکتے ہیں ان میں Orcus، Sedna اور Quaoar شامل ہیں۔

پلوٹو 1930ء میں اپنی دریافت سے 2006ء تک نظام شمسی کا نواں سیارہ تسلیم کیا جاتا تھا۔ لیکن بیسویں صدی کے آخر اور اکیسویں صدی کے اوائل میں پلوٹو سے ملتے جلتے بہت سے دوسرے اجسام بیرونی نظام شمسی میں دریافت کیے گئے، خصوصاً ارس، جو جسامت میں پلوٹو سے بڑا ہے۔

سورج کے گرد مدار میں باقی تمام اجسام چھوٹے شمسی اجسام (Small Solar System bodies) کے زمرے میں آتے ہیں۔[2]

قدرتی سیارچے یا چاند وہ اجسام ہیں جو سورج کی بجائے دوسرے سیاروں، بونے سیاروں یا SSSBs کے گرد گردش کر رہے ہوں۔

کسی بھی سیارے کا سورج سے فاصلہ ہمیشہ یکساں نہیں رہتا کیونکہ سیاروں کے مدار عموماً بیضوی ہوتے ہیں۔ کسی سیارے کے سورج سے کم سے کم فاصلے کو اس کا طرف الشمس (perihelion) کہتے ہیں، اور اس کے زیادہ سے زیادہ فاصلے کو اس کا اوج (aphelion) کہتے ہیں۔

ماہرین فلکیات عام طور پر اجرام فلکی کے باہمی فاصلوں کی پیمائش کے لئے فلکیاتی اکائیاں( Astronomical Unit یا AU ) استعمال کرتے ہیں۔ ایک فلکیاتی اکائی( AU ) تقریباًً سورج سے زمین تک کے فاصلے کے برابر ہوتی ہے۔ سورج سے زمین کا فاصلہ تقریباًً 149598000 کلومیٹر یا 93000000 میل ہے. پلوٹو سورج سے 38 فلکیاتی اکائیوں (AU) جبکہ مشتری تقریباًً 5.2 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے۔ ایک نوری سال، جو ستاروں کے مابین فاصلوں کی معروف ترین اکائی ہے، تقریباًً 63,240 فلکیاتی اکائیوں (AU) کے برابر ہوتی ہے۔

غیر رسمی طور پر نظام شمسی کو الگ الگ مَناطِق (zones) میں تقسیم کیا گیا ہے۔ اندرونی نظام شمسی میں پہلے چار سیارے اور سیارچوں کی پٹی شامل ہے۔ بعض فلکیات دان بیرونی نظام شمسی میں سیارچوں سے پرے تمام سیاروں اور دوسرے اجسام کو شامل کرتے ہیں، [3] جبکہ بعض کے نزدیک بیرونی نظام شمسی نیپچون کے بعد شروع ہوتا ہے اور مشتری، زحل، یورینس اور نیپچون ایک علیحدہ درمیانی مِنطقہ (zone) کا حصہ ہیں۔[4]

[ترمیم] مسطّر اور ساخت

نظام شمسی کے اجسام کے مدار؛ اصل قطر کے متناسب۔ تصویر اوپری بائیں کونے سے گھڑی وار سمت میں ہے۔

سورج، جو ایک main sequence G2 ستارہ ہے، نظام شمسی کا مرکزی جز ہے۔ سورج نظام شمسی کی معلوم کمیت میں سے 99.86 فیصد کا حامل ہے اور ثقلی طور پر دوسرے تمام اجسام پر حاوی ہے۔[5] مشتری اور زحل، جو سورج کے گرد گردش کرنے والے سب سے بڑے سیارے ہیں، باقی ماندہ کمیت کے 90 فیصد کے حامل ہیں۔ اورت بادل میں بھی، جو فی الحال ایک غیر ثابت شدہ نظریہ ہے، مادے کی کافی مقدار موجود ہو سکتی ہے۔

سورج کے گرد گردش کرنے والے سبھی سیاروں کے مدار (پلوٹو سیارہ نہیں ہے) زمین کے مدار کے تقریباًً متوازی ہیں یا اس سے بہت کم زاویہ بناتے ہیں۔ اس کے مقابلے میں دم دار سیاروں اور کوئپر پٹی کے اجسام کے مدار زمین کے مدار سے کافی زاویے پر ہیں۔

سورج کے گرد گردش کے ساتھ ساتھ تمام سیارے اپنے محور پر بھی گردش کرتے ہیں۔ اگر سورج کے قطب شمالی کے عین اوپر سے معائنہ کیا جائے تو ماسوائے چند اجسام کے، جیسے ہیلی کا دمدار سیارہ، تمام سیارے اپنے محور کے گرد مخالف گھڑی وار سمت میں گردش کرتے ہیں۔

تمام اجسام سورج کے گرد کیپلر کے قانون کے مطابق حرکت کرتے ہیں۔ ہر جسم کا مدار بیضوی ہے اور اس بیضے کے ایک مرکز (focus) پر سورج واقع ہے۔

سورج کی یہ تصویر کلیمینٹائن مہم میں چاند کے پیچھے سے لی گئی ہے۔ دائیں سے بائیں: زحل، مریخ اور عطارد نظر آرہے ہیں

سورج کے قریب والے اجسام دور والے اجسام کے مقابلے میں زیادہ تیزی سے گردش کرتے ہیں۔ سیاروں کے مدار بہت کم بیضوی، بلکہ تقریباًً دائروی ہیں لیکن بہت سے دمدار سیاروں، سیارچوں اور کوئپر پٹی کے اجسام کے مدار انتہائی بیضوی ہیں۔

سیاروں کے مدار ایک دوسرے سے بہت زیادہ فاصلے پر واقع ہیں اور دو مداروں کے درمیانی فاصلے میں تغیر بھی بہت زیادہ پایا جاتا ہے۔ یہ فاصلے نقشوں میں دکھانا کافی مشکل ہے اس لئے عموماً نظام شمسی کے نقشوں میں سیاروں کو ایک دوسرے سے یکساں فاصلے پر دکھایا جاتا ہے۔ لیکن حقیقت میں، کچھ مثالوں کے سوا، کوئی سیارہ سورج سے جتنا دور ہے، اس کے مدار کا اپنے سے پہلے والے سیارے کے مدار سے فاصلہ اتنا ہی زیادہ ہے۔ مثال کے طور پر زہرہ کا مدار عطارد کے مدار سے 0.33 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے، جبکہ زحل مشتری سے 4.3 فلکیاتی اکائی (AU) دور ہے، اور نیپچون یورینس سے 10.5 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے۔ سائنسدانوں نے ان فاصلوں کا باہمی تعلق معلوم کرنے کی کچھ کوششیں تو کی ہیں لیکن اب تک کوئی نظریہ متفقہ طور پر قبول نہین کیا جا سکا ہے۔

تشکیل

قبل السیاروی طشتری ایک فنکار کی نظر میں (Artist’s conception of a protoplanetary disk)

نظام شمسی کے بارے میں خیال کیا جاتا ہے کہ یہ نیبولائی نظریے کے مطابق وجود میں آیا۔ یہ نظریہ عمانویل کینٹ نے 1755ء میں پیش کیا تھا۔ اس نظریے کے مطابق 4 ارب 60 کروڑ سال پہلے ایک بہت بڑے مالیکیولی بادل کے ثقلی انہدام (gravitational collapse) کی وجہ سے نظام شمسی کی تشکیل ہوئی۔ یہ بادل شروع میں اپنی وسعت میں کئی نوری سال پر محیط تھا اور خیال ہے کہ اس کے انہدام سے کئی ستاروں نے جنم لیا ہو گا۔ قدیم شہابیوں میں ایسے عناصر کی معمولی مقدار/ذرات(traces) پائے گئے ہیں جو صرف بہت بڑے پھٹنے والے ستاروں (نجومِ منفجر (exploding stars)) میں تشکیل پاتے ہیں۔ اس سے یہ ظاہر ہوتا ہے کہ سورج کی تشکیل ستاروں کے کسی ایسے جھرمٹ (خوشۂ انجم (star cluster)) میں ہوئی جو اپنے قریب کے کئی سپر نووا دھماکوں کی زد میں تھا۔ ان دھماکوں سے پیدا ہونے والی لہروں (shock waves) نے اپنے آس پڑوس کے نیبیولا کے گیسی مادے پر دباؤ ڈال کر زیادہ گیسی کثافت کے خطے پیدا کر دیے جس سے سورج کی تشکیل کی ابتدا ہوئی. ان کثیف خطوں میں قوت ثقلی کو بہتر طور پر اندرونی گیسی دباؤ پر قابو پانے کا موقعہ ملا اور پھر یہ کشش ثقل پورے بادل کے انہدام (collapse) کا باعث بنی۔

اس گیسی بادل کا وہ حصہ جو بعد میں نظام شمسی بنا، اپنے قطر میں قریباً 7,000 سے 20,000 فلکیاتی اکائیوں (AU) پر محیط تھا اور اس کی کمیت سورج کی موجودہ کمیت سے کچھ زیادہ تھی۔ اسے ماہرین فلکیات قبل الشمس نیبیولا بھی کہتے ہیں۔ جیسے جیسے نیبیولا سکڑتا گیا، محافظۂ زاویائی معیار حرکت یعنی conservation of angular momentum کے باعث اس کی گردش کی رفتار بڑھتی گئی۔ جوں جوں مادہ اس بادل کے مرکز میں اکٹھا ہوتا گیا، ایٹموں کے آپس میں ٹکرانے کی تکرار (تعدد (frequency)) بھی بڑھتی گئی اور اس وجہ سے مرکز میں درجہ حرارت بڑھنے لگا۔ مرکز، جہاں پر اب زیادہ تر مادہ اکٹھا ہو چکا تھا، گرم سے گرم تر ہوتا چلا گیا اور اس کا درجہ حرارت باقی ماندہ بادل کے مقابلے میں کافی زیادہ ہو گیا۔ گردش، کشش ثقل، گیسی دباؤ اور مقناطیسی قوتوں کے زیر اثر سکڑتا ہوا نیبیولا آہستہ آہستہ ایک گردش کرتی ہوئی قبل السیاروی طشتری میں تبدیل ہونا شروع ہو گیا جس کا قطر تقریباًً 200 فلکیاتی اکائیاں (AU) تھا اور جس کے مرکز میں ایک گرم اور کثیف (dense) جنم لیتا ہوا ستارہ تھا۔

تقریباًً 10 کروڑ سال بعد اس سکڑتے ہوئے نیبیولا کے مرکز میں ہائڈروجن کی کثافت اور اس کا دباؤ اتنا ہو گیا کہ یہاں پر مرکزی ائتلاف کا عمل شروع ہو گیا۔ مرکزی ائتلاف کی رفتار اس وقت تک بڑھتی رہی جب تک آبسکونی توازن (hydrostatic equilibrium) حاصل نہیں ہو گیا۔ اس موقع پر مرکزی ائتلاف سے پیدا ہونے والی توانائی/دباؤ کی قوت کشش ثقل کے برابر ہو گئی اور مزید سکڑاؤ کا عمل رک گیا۔ اب سورج ایک مکمل ستارہ بن چکا تھا۔

بادل کے باقی ماندہ گردوغبار اور گیسوں سے سیاروں کی تشکیل ہوئی۔

سورج

زمین سے سورج کا منظر

سورج نظام شمسی کا مرکزی ستارہ اور اس کا سب سے اہم حصہ ہے۔ یہ کمیت میں زمین کی نسبت 332,946 گنا بڑا ہے۔ اس کی بھاری کمیت اسے اتنی اندرونی کثافت فراہم کرتی ہے جس سے اس کے مرکز میں مرکزی ائتلاف(nuclear fusion) کا عمل ہو سکے۔ مرکزی ائتلاف کے نتیجے میں بہت بڑی مقدار میں توانائی پیدا ہوتی ہے جس کا زیادہ تر حصہ برقناطیسی لہروں (electromagnetic radiations) اور روشنی کی شکل میں خلا میں بکھر جاتا ہے

ویسے تو ماہرین فلکیات سورج کو ایک درمیانی جسامت کا زرد بونا ستارہ شمار کرتے ہیں، لیکن یہ درجہ بندی کچھ گمراہ کن ہے، کیونکہ ہماری کہکشاں کے دوسرے ستاروں کے مقابلے میں سورج نسبتاً بڑا اور چمکدار ہے۔ ستاروں کی درجہ بندی ہرٹزپرنگ-رسل نقشے(Hertzsprung-Russell diagram) کے مطابق کی جاتی ہے۔ اس گراف میں ستاروں کی چمک کو انکے سطحی درجہ حرارت کے مقابل درج (plot) کیا جاتا ہے۔ عمومی طور پر زیادہ گرم ستارے زیادہ چمکدار ہوتے ہیں۔ اس عمومی خصوصیت کے حامل ستاروں کو رئیسی متوالیہ (main sequance) ستارے کہتے ہیں اور سورج بھی اسی زمرے میں آتا ہے۔ لیکن سورج سے زیادہ گرم اور چمکدار ستارے بہت کمیاب ہیں جبکہ سورج سے مدھم اور ٹھنڈے ستارے عام ہیں۔

ہرٹزپرنگ-رسل نقشہ۔ Main Sequence نچلے دائیں کونے سے اوپری بائیں کونے تک ہے

سائنسدانوں کا خیال ہے کے اس وقت سورج اپنی زندگی کے عروج پر ہے اور ابھی اس میں جلانے کے لئے بہت ایندھن باقی ہے۔ وقت گزرنے کے ساتھ سورج کی چمک میں اضافہ ہو رہا ہے؛ ابتدا میں سورج کی چمک اس کی موجودہ چمک کا صرف 75 فیصد تھی۔

سورج میں ہائڈروجن اور ہیلیم کے تناسب سے اندازہ ہوتا ہے کہ یہ ابھی اپنی عمر کے درمیانی حصے میں ہے۔ وقت کے ساتھ سورج کی جسامت اور چمک میں اضافہ ہوتا جائے گا، اس کا درجہ حرارت کم ہوتا جائے گا اور رنگت سرخی مائل ہوتی جائے گی۔ تقریباًً 5 ارب سال میں سورج ایک سرخ جن (giant) بن جائے گا۔ اس وقت سورج کی چمک اس کی موجودہ چمک سے کئی ہزار گنا زیادہ ہو گی

سورج اول آبادی (population I) کا ستارہ ہے؛ یہ کائناتی ارتقاء کے بہت بعد کے مراحل میں پیدا ہوا تھا۔ اس کی ساخت میں دوئم آبادی (population II) کے ستاروں کی نسبت بھاری عناصر کی مقدار زیادہ ہے۔ ان بھاری عناصر کو فلکیات کی زبان میں دھاتیں کہتے ہیں گو کہ علم کیمیا میں دھات کی تعریف اس سے مختلف ہے۔ ہائڈروجن اور ہیلیم سے بھاری عناصر قدیم پھٹنے والے ستاروں کے مرکز میں بنے تھے؛ اس لئے کائنات میں ان عناصر کی موجودگی کے لئے ستاروں کی پہلی نسل (generation) کا مرنا ضروری تھا۔ قدیم ترین ستاروں میں دھاتوں کی بہت کم مقدار پائی جاتی ہے جبکہ نئے ستاروں میں ان کی مقدار زیادہ ہے۔ ماہرین فلکیات کے خیال میں سورج کی اونچی دھاتیت اس کے گرد سیاروں کی تشکیل کے لئے انتہائی اہم تھی کیونکہ سیارے دھاتوں کے ارتکام (accretion) سے ہی بنے ہیں۔

اندرونی نظام شمسی

اندرونی نظام شمسی اس خطے کا روائتی نام ہے جس میں سورج، پہلے چار سیارے اور سیارچے آتے ہیں۔ یہ سیارے اور سیارچے سلیکیٹ اور دھاتوں سے ملکر بنے ہیں اور سورج سے نسبتاً قریب قریب ہیں؛ اس پورے خطے کا رداس مشتری اور زحل کے مابین فاصلے سے بھی کم ہے۔

اندرونی سیارے

اندرونی سیارے۔ بائیں سے دائیں: عطارد، زہرہ، زمین،مریخ۔ تمام سیاروں کا حجم ان کے اصل حجم کے متناسب دکھایا گیا ہے

نظام شمسی کے چار پہلے سیارے اپنی ساخت کی بنا پر باقی سیاروں سے مختلف ہیں۔ ان کی سطح عموماً چٹانوں اور اونچا نقطۂ انجماد رکھنے والی معدنیات، مثلاً سلیکیٹ وغیرہ سے بنی ہے۔ ان کی ٹھوس سطح کے نیچے انتہائی گرم اور نیم مائع مینٹل پایا جاتا ہے اور اس کا بھی غالب جز سلیکیٹ معدنیات ہی ہیں۔ ان کا مرکز لوہے اور نکل کا بنا ہوا ہے۔ چار میں سے تین سیاروں (زہرہ، زمین اور مریخ) میں کرہ ہوائی بھی موجود ہے۔ ان سب پر شہاب ثاقب ٹکرانے کی وجہ سے تصادمی گڑھے بھی پائے جاتے ہیں۔ چونکہ ان کی ٹھوس سطح کے نیچے مائع مینٹل زیر حرکت رہتا ہے، اس لئے ان کا سطحی قرش بھی وقتاً فوقتاً حرکت کرتا ہے۔ قرش کی اس حرکت کے باعث سطح پر آتش فشاں پہاڑ اور کھائیاں جنم لیتی ہیں۔

عطارد
عطارد نظام شمسی کا سب سے چھوٹا (0.055 کمیت ارضی) اور سورج سے قریب ترین (0.4 AU) سیارہ ہے۔ عطارد کا کوئی چاند نہیں اور اس کا معمولی کرہ فضا زیادہ تر ان ایٹموں پر مشتمل ہے جو باد شمسی اس کی سطح پر سے اڑاتی ہے۔
زہرہ
زہرہ حجم میں تقریباً زمین کے برابر ہی ہے(0.815 کمیت ارضی)۔ زمین کی طرح اس کا مرکز بھی فولادی ہے جس کے گرد ایک موٹی مینٹل کی تہ ہے جو سلیکیٹ کی بنی ہے۔ زہرہ پر اچھا خاصا کرہ فضا بھی موجود ہے۔ زہرہ کا موسم خشک اور فضا زمین کی نسبت نوے گنا زیادہ کثیف ہے۔ اس کی سطح پر اندرونی ارضیاتی فاعلیہ (geological activity) کے بہت سے آثار جیسے کہ آتش فشاں پہاڑ اور کہائیاں پائی جاتی ہیں۔ زہرہ کا کوئی بھی چاند نہیں ہے اور پورے نظام شمسی میں یہ سب سے گرم سیارہ ہے۔ اس کی سطح پر درجۂ حرارت اکثر 400 درجۂ صد (centigrade) سے بھی زیادہ ہو جاتا ہے۔ اس گرمی کی وجہ غالباً اس کی کثیف فضا اور اس میں موجود دفیئہ یا حبس المکاں (Green House) گیسیں ہیں۔
زمین
زمین اندرونی سیاروں میں سب سے بڑا اور کثیف سیارہ ہے۔ اندرونی سیاروں میں یہ واحد سیارہ ہے جس پر اب بھی ارضیاتی عمل ہو رہا ہے اور جس پر زندگی پائی جاتی ہے۔ اس کا مائع کرہ آبی تمام سیاروں میں یکتا ہے اور صرف زمین پر ساخت الطبقات (Plate Tectonics) دیکھنے کو ملتی ہیں۔ زمین کی فضا بھی باقی سب سیاروں سے بہت مختلف ہے؛ اس پر موجود جانوروں، پودوں اور خوردہ حیات نے فضا میں %21 فیصد آزاد آکسیجن پیدا کر دی ہے جو کسی اور سیارے پر نہیں پائی جاتی۔ زمین کا ایک چاند بھی ہے جو باقی اندرونی سیاروں کے چاندوں سے بڑا ہے۔
مریخ
مریخ زمین اور زہرہ دونوں سے چھوٹا ہے (0.107 کمیت ارضی)۔ اس کی فضا کاربن ڈائی آکسائڈ پر مشتمل ہے۔ اس کی سطح پر بڑی تعداد میں آتش فشاں پہاڑ جیسے Olympus Mons اور کھائی نما وادیاں جیسے Valles Marineris پائی جاتی ہیں جن سے یہ ظاہر ہوتا ہے کے ماضی قریب کے زمانے تک اس پر ارضیاتی فاعلیہ (geological activity) ہوتے رہے ہیں۔ مریخ کے دو بہت ہی چھوٹے چھوٹے چاند (Demios اور Phobos) ہیں اور خیال کیا جاتا ہے کہ یہ دراصل سیارچے ہیں جو مریخ کے بہت قریب سے گزرتے ہوئے اس کی گرفت میں آگئے ہیں۔

 سیارچوی پٹی

مکمل مضمون کے لئے دیکھیے سیارچوی پٹی

سیارچوی پٹی

سیارچے عام طور پر چھوٹے اجرام فلکی ہوتے ہیں جو چٹانوں، دھاتوں اور اس طرح کی دوسرے ناقابل تبخیر و تصعید (non-volatile) مادوں سے بنے ہوتے ہیں۔ سیارچوی پٹی مریخ اور مشتری کے درمیان، سورج سے 2.3 سے 3.3 فلکیاتی اکائیوں (AU) کے فاصلے پر واقع ہے۔ ماہرین کا خیال ہے کہ یہ اجسام نظام شمسی کی تخلیق کے وقت مشتری کی ثقلی مداخلت کے باعث اکٹھے ہو کر ایک سیارہ بننے سے رہ گئے تھے۔

سیارچے اپنی جسامت میں خوردبینی ذرات سے لیکر کئی سو کلومیٹر چوڑی دیوہیکل چٹانوں تک ہو سکتے ہیں۔ انتہائی بڑے سیارچوں، جیسے کہ سیرس، کے علاوہ تمام سیارچوں کو چھوٹے اجرام فلکی میں شمار کیا جاتا ہے۔ مستقبل میں مزید تحقیق کے بعد کچھ اور بڑے سیارچوں، مثلاً Vesta اور Hygieia، کو بھی بونے سیارے قرار دیا جا سکتا ہے۔

سیارچوی پٹی میں ایسے ہزاروں، اور ممکنہ طور پر لاکھوں، اجسام پائے جاتے ہیں جن کا قطر ایک کلومیٹر سے زیادہ ہے۔ اس کے باوجود اس بات کا امکان کم ہی ہے کہ سیارچوں کی پٹی کی کل کمیت زمین کی کمیت کے ہزارویں حصے سے زیادہ ہو۔ پٹی میں سیارچے ایک دوسرے سے کافی دور دور ہیں اور خلائی جہاز عموماً اس خطے سے کسی تصادم کے بغیر آسانی سے گزر جاتے ہیں۔ چھوٹے سیارچے، جن کا قطر 10 میٹر سے لیکر 1 ملی میٹر تک ہو، شہاب ثاقب کہلاتے ہیں۔

Ceres

سیرس
سیرس سیارچوی پٹی کا سب سے بڑا جسم ہے اور اس میں پایا جانے والا واحد بونا سیارہ بھی۔ یہ سورج سے 2.77 فلکیاتی اکائی (AU) کے فاصلے پر ہے۔ اس کا قطر 1000 کلومیٹر سے کچھ کم ہے جو اتنی کشش ثقل پیدا کرنے کے لئے کافی ہے جس کے زیر اثر یہ ایک کرے کی شکل اختیار کر گیا ہے۔ انیسویں صدی کے اوائل میں جب سیرس دریافت ہوا تو اسے ایک سیارہ سمجھا گیا لیکن 1850ء میں دوسرے سیارچوں کی دریافت کے بعد اس کا درجہ کم کر کے اسے سیارچوں کی فہرست میں شامل کر دیا گیا۔ 2006ء میں اس کا درجہ دوبارہ تبدیل کر کے اسے بونا سیارہ قرار دیا گیا۔
سیارچوی گروہ
سیارچوں کو ان کی مداری خصوصیات کی بنا پر گروہوں اور خاندانوں میں تقسیم کیا گیا ہے۔ سیارچہ چاند وہ سیارچے ہوتے ہیں جو اپنے سے بڑے سیارچوں کے گرد گردش کرتے ہیں۔ یہ عام سیاروں کے چاندوں کی طرح آسانی سے نہیں پہچانے جا سکتے کیونکہ بعض اوقات اس جسم کے تقریباً برابر ہی ہوتے ہیں جس کے گرد گردش کر رہے ہوتے ہیں۔ سیارچوی پٹی میں کچھ دمدار سیارے (main-belt comets) بھی پائے جاتے ہیں۔ ماہرین کا خیال ہے کہ زمین پر پانی اسی طرح کے سیارچوی پٹی کےدمدار سیاروں کی بدولت پہنچا ہے۔

وسطی نظام شمسی

نظام شمسی کے وسطی حصے میں دیو ہیکل گیسی سیارے، ان کے بڑے بڑے چاند اور کم مدت کے دمدار سیارے پائے جاتے ہیں۔ اس حصے کا کوئی روائتی نام نہیں ہے؛ بعض اوقات اسے “بیرونی نظام شمسی” کہا جاتا ہے لیکن عصر حاضر میں یہ نام زیادہ تر نیپچون سے پرے کے حصے کے لئے استعمال ہوتا ہے۔

 بیرونی سیارے

نیچے سے اوپر: مشتری، زحل، یورینس اور نیپچون

سورج کے گرد گردش کرنے والےتمام مادے میں سے 99 فیصد چار بیرونی سیاروں، یا گیسی جنات، میں موجود ہے۔ مشتری کی فضاء زیادہ تر ہائیڈروجن اور ہیلیم پر مشتمل ہے۔ یورینس اور نیپچون کی فضاء میں مختلف برفانی مادوں، جیسے کہ پانی، امونیا اور میتھین، کی زیادہ مقدار پائی جاتی ہے۔ ان برفانی مادوں کے باعث کچھ ماہرین فلکیات ان دو سیاروں کو ایک الگ ہی زمرے میں رکھتے ہیں جسے وہ “یورانی سیارے” یا “برفانی جنات” کہتے ہیں۔ ان چاروں سیاروں کے گرد حلقے ہیں لیکن صرف زحل کے حلقے زمین سے صاف طور پر دکھائی دیتے ہیں۔

مشتری
مشتری نظام شمسی کا سب سے بڑا سیارہ ہے۔ یہ زمین سے 318 گنا بھاری ہے اور سورج سے 5.2 فلکیاتی اکائی (AU) کے فاصلے پر ہے۔ اس کی ساخت زیادہ تر ہائڈروجن اور ہیلیم پر مشتمل ہے۔ مشتری کی اندرونی حرارت کی وجہ سے اس کی فضاء میں کچھ تقریباً مستقل خصوصیات پیدا ہو گئی ہیں، جیسے کہ بادلوں کے جمگھٹے اور عظیم سرخ نشان۔ مشتری کے تریسٹھ چاند ہیں۔ ان میں سے چار بڑے چاند، گینیمیڈ، کالیسٹو، آئی او اور یوروپا بہت سی ایسی خصوصیات کے حامل ہیں جو اندرونی سیاروں میں پائی جاتی ہیں؛ مثلاً آتش فشانی اور اندرونی حرارت۔ گینیمیڈ، جو نظام شمسی میں سب سے بڑا چاند ہے، حجم میں عطارد سے بھی بڑا ہے۔
زحل
نظام شمسی کا چھٹا سیارہ زحل اپنے بکثرت حلقوں کے لیئے مشہور ہے۔ زحل سورج سے 9.5 فلکیاتی اکائی (AU) کے فاصلے پر ہے اور زمین سے 95 گنا بھاری ہے۔ یہ اپنی سطح اور فضاء کی ساخت میں مشتری سے کافی مماثلت رکھتا ہے گو کہ اس کی نسبت کافی ہلکا ہے۔ زحل کے چھپن چاند ہیں جن میں سے دو، ٹائیٹن اور انکلاڈس، ارضیاتی فاعلیہ کا مظاہرہ کرتے ہیں اگرچہ کہ یہ زیادہ تر برف سے بنے ہیں۔ ٹائیٹن حجم میں عطارد سے بھی بڑا ہے اور نظام شمسی کا واحد چاند ہے جس پر خاطر خواہ کرہ فضاء موجود ہے۔
یورینس
یورینس سورج سے 19.6 فلکیاتی اکائی (AU) کے فاصلے پر ہے اور زمین سے 14 گنا بھاری ہے۔ یہ چاروں بیرونی سیاروں میں سے سب سے کم کمیت کا حامل ہے۔ یورینس کی ایک منفرد بات اس کے محور کا اس کے مدار سے انتہائی ترچھا زاویہ ہے۔ اس کا محور سورج کے گرد اس کے مدار سے 98 درجے کا زاویہ بناتا ہے۔ اس منفرد زاویے کی وجہ سے یورینس پر دن اور رات کی تشکیل باقی سب سیاروں کی نسبت بالکل مختلف ہے۔ اس کے قطبین پر بھی یورینسی سال میں ایک بار سورج عین سر پر آجاتا ہے اور لمبے عرصے تک اپنی جگہ سے نہیں ہٹتا۔ اس کا مرکز باقی گیسی جنات سیاروں کی نسبت ٹھنڈا ہے اور اس سے بہت کم حرارت خلا میں خارج ہوتی ہے۔ یورینس کے 27 چاند ہیں جن میں سے سب سے بڑے ٹیٹانیہ، اوبیرون، امبریل، ایریل اور میرانڈہ ہیں
نیپچون
نیپچون سورج سے 30 فلکیاتی اکائی (AU) کے فاصلے پر ہے اور زمین سے 17 گنا بھاری ہے۔ یہ حجم میں یورینس سے چھوٹا مگر اس سے زیادہ کثیف ہے۔ یہ یورینس سے زیادہ حرارت بھی خارج کرتا ہے لیکن مشتری اور زحل کی نسبت اس کی حرارت کا اخراج کہیں کم ہے۔ نیپچون کے تیرہ چاند ہیں۔ ان میں سب سے بڑا، ٹرائیٹن، ارضیاتی طور پر فعال ہے اور اس پر مائع نائٹروجن کے geysers پائے جاتے ہیں۔ ٹرائیٹن نظام شمسی میں واحد بڑا چاند ہے جو اپنے سیارے کے گرد گھڑی وار سمت میں گردش کرتا ہے اور اس وجہ سے ماہرین فلکیات کا خیال ہے کہ نیپچون کا یہ چاند نظام شمسی کی ابتدا سے نیپچون کے گرد گردش نہیں کر رہا بلکہ یہ ایک سیارچہ ہے جو نیپچون کے قریب سے گزرتے ہؤے اس کی گرفت ثقل میں آگیا ہے۔ نیپچون کے مدار میں کچھ دوسرے چھوٹے سیارے بھی گردش کرتے ہیں جنہیں نیپچون Trojans کہا جاتا ہے۔

[ترمیم] دم دار سیارے

مکمل مضمون کے لئے دیکھیے دم دار سیارے

دم دار سیارہ ہیلی بوپ

دم دار سیارے چھوٹے اجرام فلکی ہوتے ہیں جن کا قطر عموماً چند کلومیٹر سے زیادہ نہیں ہوتا۔ یہ مختلف قسم کے منجمد مادوں سے بنے ہوتے ہیں۔ ان کے مدار انتہائی بیضوی ہوتے ہیں؛ عموماً ان کا perihelion اندرونی سیاروں کے مداروں کے اندر ہوتا ہے اور ان کا اوج (aphelion) پلوٹو سے بھی پرے ہوتا ہے۔ جب کوئی دم دار سیارہ اندرونی نظام شمسی کی حدود میں داخل ہوتا ہے تو سورج کی حدت کے باعث اس کی سطح پر تصعید اور آئن سازی کا عمل شروع ہو جاتا ہے۔ اس کے نتیجے میں پیدا ہونے والے بخارات اور ذرات دم دار سیارے سے پیچھے رہ جاتے ہیں اور گرد اور بخارات پر مشتمل ایک لمبی سی دم بناتے ہیں جو برہنہ آنکھ سے بھی دکھائی دیتی ہے۔

کم دورانیہ/عرصہ مدت والے دم دار سیارے ہر دو سو سال یا اس سے بھی کم عرصے میں نمودار ہوتے ہیں جبکہ لمبے دورانیے والے سیارے ہزاروں سال میں ایک بار دکھائی دیتے ہیں۔ ماہرین کا خیال ہے کہ کم دورانیے والے سیارے، جیسے ہیلی کا دم دار سیارہ، کوئپر بیلٹ سے آتے ہیں، جبکہ لمبے دورانیے والے سیارے، جیسے ہیل-باپ، اورٹ بادل سے آتے ہیں۔ دم دار سیاررں کے گروہ، جیسے کہ Kreutz Sungrazers، ایک سیارے کے ٹوٹنے سے بنتے ہیں۔ کچھ انتہائی لمبے دورانیے کے سیاروں کے بارے میں یہ بھی خیال کیا جاتا ہے کہ وہ نظام شمسی کے باہر سے آتے ہیں، لیکن ان کے مداروں درست تعین مشکل ہے اس لئے یہ بات وثوق سے نہیں کہی جا سکتی۔ بعض پرانے دم دار سیارے بارہا سورج کے قریب سے گزرنے کے باعث اپنے منجمد مادے کھو چکے ہیں اور صرف ان کا چٹانی مرکز باقی بچا ہے۔ انہیں اکثر سیارچوں کے زمرے میں شمار کیا جاتا ہے۔

عَبر نیپچون خطہ (Trans-Neptunian region)

نیپچون سے پرے کا خطہ، جسے اکثر بیرونی نظام شمسی یا خطہ ماورا النیپچون بھی کہا جاتا ہے، زیادہ تر unexplored ہے۔ بظاہر یہ خطہ صرف برف اور چٹانی مادوں سے بنے چھوٹے اجسام پر مشتمل دکھائی دیتا ہے۔ اس خطے میں اب تک دریافت شدہ اجسام میں سب سے بڑا جسم قطر میں زمین سے پانچ گنا چھوٹا اور کمیت میں ہمارے چاند سے بھی بہت کم ہے۔

کوئپر پٹی

کوئپر پٹی ایک مصور کی نظر میں۔ نیپچون اور پلوٹو کے مدار اصل قطر کے متناسب دکھائے کئے ہیں

کوئپر پٹی, جو اس خطے کے شروع میں واقع ہے، سیارچوی پٹی کی طرح گردوغبار اور ملبے کا ایک بہت بڑا حلقہ ہے، لیکن سیارچوی پٹی کے برعکس یہ زیادہ تر برف پر مشتمل ہے۔ یہ حلقہ سورج سے 30 سے 50 فلکیاتی اکائیوں (AU) کے فاصلے پر پھیلا ہوا ہے۔ یہ خطہ کم مدت کے دمدار سیاروں، جیسے ہیلی کا دمدار سیارہ، کا منبع خیال کیا جاتا ہے۔ اس پٹی کے بیشتر اجسام نظام شمسی کے چھوٹے اجسام کے زمرے میں آتے ہیں لیکن ان میں سے بعض بڑے اجسام، جیسے Varuna ،Quaoar اور Orcus، کو مستقبل میں بونے سیارے بھی قرار دیا جا سکتا ہے۔ ماہرین کے اندازوں کے مطابق کوئپر پٹی میں 50 کلومیٹر سے زیادہ قطر والے ایک لاکھ سے زیادہ اجسام موجود ہیں، لیکن ان کے خیال میں اس پٹی کی مجموعی کمیت زمین کی کمیت کے دسویں یا ایک سویں حصے کے برابر ہے۔ اس پٹی کے اکثر اجسام کے ایک سے زیادہ چاند ہیں اور اکثر کے مدار زمین کے مدار سے کافی زاویے پر ہیں

گمگی اور روائتی کوئپر پٹی۔ گمگی اجسام کے مدار سرخ رنگ میں دکھائے گئے ہیں جبکہ روائتی اجسام کے مدار نیلے رنگ میں

کوئپر پٹی کو دو حصوں میں تقسیم کیا جا سکتا ہے؛ روائتی پٹی اور گمگی پٹی (resonant belt)۔ گمگی پٹی کے اجسام نیپچون سے ایک گمگی رشتہ (resonance relationship) میں جڑے ہوئے ہیں؛ یعنی سورج کے گرد ان کی گردش کا وقت دوران ینپچون کی کشش ثقل کے زیر اثر ہے۔ نیپچون کے اپنے مدار میں ہر تین چکر پورا کرنے پر یہ اجسام سورج کے گرد اپنے دو چکر پورے کرتے ہیں یا پھر اس کے ہر دو چکروں کے مقابلے میں ایک۔ گمگی پٹی نیپچون کے مدار کے اندر ہی سے شروع ہوتی ہے۔ روائتی پٹی کے اجسام کا نیپچون کی گردش دوران سے کوئی تعلق نہیں ہے اور یہ پٹی تقریباًً 39.4 سے 47.7 فلکیاتی اکائیوں (AU) تک پھیلی ہوئی ہے۔ روائتی پٹی کے اجسام کو “کیوبیوانوز”(cubewanos) بھی کہا جاتا ہے۔ یہ عجیب سا نام دراصل اس پٹی کے سب سے پہلے دریافت ہونے والے جسم “کیو بی ون” (QB1) کے نام پر رکھا گیا ہے جو 1992 میں دریافت ہوا تھا۔

پلوٹو اور اس کے تین معلوم چاند

پلوٹو اور کیرون
پلوٹو جس کا سورج سے اوسط فاصلہ 39 فلکیاتی اکائیاں (AU) ہے، ایک بونا سیارہ اور کوئپر پٹی کا سب سے بڑا معلوم جسم ہے۔ جب 1930 میں یہ دریافت ہوا تو اسے نظام شمسی کا نواں سیارہ گردانا گیا اور اس کی یہ حیثیت 2006 میں بینالاقوامی فلکیاتی اتحاد کی جانب سے سیارے کی ایک نئی تعریف پیش کئے جانے تک برقرار رہی۔ پلوٹو کا مدار کافی بیضوی اور ترچھا ہے؛ زمین کے مدار کے اس کا زاویہ 17 درجے ہے۔ اپنے اوج (aphelion) پر یہ سورج سے 49.5 فلکیاتی اکائیاں (AU) دور چلا جاتا ہے جبکہ اپنے قرب الشمس (perihelion) پر سورج سے اس کا فاصلہ صرف 29.7 فلکیاتی اکائیاں (AU) رہ جاتا ہے۔
کیرون پلوٹو کا سب سے بڑا چاند ہے۔ اس بات کا قوی امکان ہے کہ ماہرین فلکیات کیرون کی درجہ بندی تبدیل کرکے اسے بھی بونا سیارہ قرار دے دیں۔ کیرون دراصل پلوٹو کے گرد گردش نہیں کرتا بلکہ یہ دونوں اجسام اپنے درمیان خلا میں ایک ثقلی نقطہ توازن کے گرد گردش کرتے ہیں اور جڑواں سیارے محسوس ہوتے ہیں۔ دو بہت چھوٹے چھوٹے سے چاند، نکس اور ہائڈرا، ان دونوں کے گرد گردش کرتے ہیں۔
پلوٹو گمگی پٹی (resonant belt) میں واقع ہے اور نیپچون کے اپنے مدار میں ہر تین چکر پورے کرنے پر یہ اپنے دو چکر پورے کرتا ہے۔ کوئپر پٹی کے وہ اجسام جو نیپچون کے ساتھ اسی تناسب میں سورج کے گرد گردش کرتے ہیں،پلوٹو کی مناسبت سے پلوٹینو (plutinos) بھی کہلاتے ہیں۔

منتشر طشتری

منتشر طشتری کے اجسام کالے اور سرمئی رنگ میں دکھائے گئے ہیں

منتشر طشتری کوئپر پٹی سے overlap کرتی ہے لیکن اس سے کہیں زیادہ دور تک پھیلی ہوئی ہے۔ منتشر طشتری کے اجسام کے بارے میں خیال کیا جاتا ہے کے یہ دراصل کوئپر پٹی سے ہی آئے ہیں اور نیپچون کی ابتدائی زندگی میں جب اس کا مدار سورج سے دور جا رہا تھا تو اس کی کشش ثقل کے زیر اثر یہ اجسام بے ترتیب مداروں میں چلے گئے۔ زیادہ تر منتشر طشتری کے اجسام کا قرب الشمس (perihelion) کوئپر پٹی کے اندر واقع ہے، جبکہ ان کے اوج (aphelion) کا سورج سے فاصلہ 150 فلکیاتی اکائیوں (AU) تک ہے۔ ان کے مدار زمین کے مدار سے کافی زاویہ بناتے ہیں اور اکثر کے مدار زمین کے مدار کے عموداً (90 درجے کے زاویہ پر) واقع ہیں۔ بعض فلکیات دان منتشر طشتری کو کوئپر پٹی کا ہی حصہ سمجھتے ہیں اور اسے “کوئپر پٹی کے منتشر اجسام” کا نام دیتے ہیں۔

ارس اور اس کا چاند ڈسنومیا

ارس
ارس منتشر طشتری کا سب سے بڑا معلوم جسم ہے۔ یہ سورج سے 68 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے اور پلوٹو سے کم از کم 5 فیصد بڑا ہے۔ اس کے قطر کا اندازہ 2,400 کلومیٹر یا 1500 میل ہے. ارس ماہرین فلکیات کے مابین اکثر بحث و مباحثے کی وجہ رہا ہے کیونکہ 2006 تک پلوٹو کو اس سے چھوٹا ہونے کے باوجود سیارے کا درجہ حاصل تھا جبکہ یہ اس اعزاز سے محروم تھا۔ اس کا ایک چاند ہے؛ ڈسنومیا۔ پلوٹو کی طرح اس کا مدار بھی بہت بیضوی ہے؛ اس کا قرب الشمس (perihelion)۔ 38.2 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے جو تقریباً پلوٹو کے سورج سے اوسط فاصلے کے برابر ہے اور اس کا اوج (aphelion)۔ 97.6 فلکیاتی اکائیوں (AU) کے فاصلے پر ہے۔ اس کا مدار زمین کے مدار سے بہت ترچھا بھی ہے۔

خطہ ہائے بعید

وہ نقطہ جہاں پر نظام شمسی ختم ہوتا ہے اور بین النجمی خلا (interstellar space) شروع ہوتی ہے کچھ ٹھیک طرح سے متعین نہیں کیا جاسکتا، کیونکہ یہ حد دو مختلف قوتیں طے کرتی ہیں: باد شمسی اور سورج کی کشش ثقل۔ باد شمسی کے بارے میں خیال کیا جاتا ہے کہ یہ پلوٹو کے مدار کے چار گنا فاصلے پر ختم ہو جاتی ہے لیکن سورج کی کشش ثقل اس سے ہزار گنا فاصلے پر بھی اثر رکھتی ہے۔

سکون شمسی

خلائی جہاز وائجر شمسی نیام میں داخل ہوتے ہوئے

کرہ شمسی (heliosphere) کو دو حصوں میں تقسیم کیا جاتا ہے. باد شمسی اپنی پوری رفتار سے تقریباًً 95 فلکیاتی اکائیوں (AU)، یا پلوٹو کے مدار سے تین گنا فاصلے تک، جاتی ہے۔ یہاں اس کا تصادم مخالف سمت سے آنے والی بین النجمی واسطے کی ہواؤں سے ہوتا ہے۔ اس تصادم کے نتیجے میں بادشمسی کی رفتار میں کمی آتی ہے، اس کے کثافت بڑھ جاتی ہے اور یہ مزید بےسکون (turbulent) ہو جاتی ہے۔ اس مقام تک کرہ شمسی ایک درست کرے کی شکل کا ہے لیکن اس سے آگے یہ ایک بیضے کی شکل کا ہو جاتا ہے جسے شمسی نیام (heliosheath) کہتے ہیں۔ شمسی نیام کی شکل اور طرز عمل دونوں ایک دمدار سیارے کی دم کی طرح ہیں؛ یہ اس مقام سے کہکشاں میں سورج کی حرکت کی سمت میں تقریباًً 40 فلکیاتی اکائیوں (AU) تک جاتی ہے لیکن اس سے مخالف سمت میں اس سے کئی گنا زیادہ فاصلے تک پھیلی ہوئی ہے۔ سکون شمسی، جو کرہ شمسی کی بیرونی حد ہے، وہ نقطہ ہے جہاں باد شمسی مکمل طور پر رک جاتی ہے اور بین النجمی خلا کا آغاز ہوتا ہے۔ [6]

آج تک کوئی خلائی جہاز سکون شمسی سے آگے نہیں گیا اس لئے یہ جاننا ناممکن ہے کہ اس سے آگے خلا میں کیا حالات ہیں۔ یہ بھی بخوبی معلوم نہیں کہ کرہ شمسی نظام شمسی کو نقصاندہ کائناتی اشعاع (cosmic rays) سے کس حد تک بچاتا ہے۔ کرہ شمسی سے باہر کے حالات معلوم کرنے کے لئے ایک خصوصی مہم زیر غور ہے۔ [7]

 اورت بادل

کوئپر پٹی اور اورت بادل، ایک فنکار کے تصور میں

نظریاتی (hypothetical) اورت بادل کھربوں برفانی اجسام کا ایک بہت بڑا مجموعہ ہے جو نظام شمسی کو چاروں طرف سے گھیرے ہوئے ہے۔ یہ سورج سے 50,000 سے 100,000 فلکیاتی اکائیوں (AU) کے فاصلے پر پھیلا ہوا ہے اور خیال کیا جاتا ہے لمبے وقت دوران کے دمدار سیارے یہیں سے آتے ہیں۔ ماہرین کا خیال ہے کہ اس کے زیادہ تر اجسام دمدار سیارے ہیں جو اندرونی نظام شمسی سے بیرونی سیاروں کی کشش ثقل کے باعث خارج ہو گئے تھے۔ اورت بادل کے اجسام بہت آہستہ رفتار سے حرکت کرتے ہیں اور ان کی حرکت میں کبھی کبھار ہونے والے واقعات جیسے کہ دوسرے اجسام سے تصادم، کسی گزرتے ہوئے ستارے کی کشش ثقل یا کہکشاں کے مدوجذر، آسانی سے خلل پیدا کر سکتے ہیں۔ [8] [9]

سیڈنا اور اندرونی اورت بادل
90377 سیڈنا ایک سرخی مائل پلوٹو کی طرح کا جسم ہے جو سورج کے گرد ایک انتہائی بڑے مدار میں گردش کر رہا ہے۔ اس کا مدار انتہائی بیضوی ہے؛ اپنے قرب الشمس (perihelion) پر یہ سورج سے76 فلکیاتی اکائیوں (AU) کے فاصلے پر ہوتا ہے لیکن اپنے اوج (aphelion) پر سورج سے 928 فلکیاتی اکائیوں (AU) کے فاصلے پر چلا جاتا ہے۔ اسے سورج کے گرد ایک چکر پورا کرنے میں 12,050 سال کا عرصہ لگتا ہے۔ مائک براؤن (Mike Brown)، جس نے سیڈنا کو 2003 میں دریافت کیا تھا, کا خیال ہے کہ سیڈنا کوئپر پٹی یا منتشر طشتری کا حصہ نہیں ہو سکتا کیونکہ اس کا اوج نیپچون کی ہجرت کے زیر اثر آنے کے لحاظ سے بہت زیادہ فاصلے پر ہے۔ وہ اور کچھ دوسرے ماہرین فلکیات سیڈنا کو ایک بالکل الگ گروہ کا حصہ خیال کرتے ہیں جسے وہ “اندرونی اورت بادل” کا نام دیتے ہیں۔[10]
غالب امکان یہ ہے کہ سیڈنا ایک بونا سیارہ ہے لیکن ابھی اس کی شکل وثوق سے معلوم نہیں ہو سکی ہے۔

حدود

نظام شمسی کا ایک بڑا حصہ ابھی بھی نا معلوم ہے۔ سورج کی کشش ثقل کے بارے میں اندازہ ہے کہ یہ 2 نوری سال، یا 125,000 فلکیاتی اکائیوں (AU)، کے فاصلے تک دوسرے ستاروں کی کشش ثقل پر حاوی ہے۔ اس کے مقابلے میں اورت بادل ممکنہ طور پر صرف 50,000 فلکیاتی اکائیوں (AU) کے فاصلے تک پھیلا ہوا ہو سکتا ہے۔[11] سیڈنا جیسے اجسام کی دریافت کے باوجود کوئپر پٹی اور اورت بادل کے درمیان کا خطہ، جس کا رداس ہزاروں فلکیاتی اکائیوں پر محیط ہے، زیادہ تر غیر مرسوم (uncharted) ہے۔ سورج اور عطارد کے درمیانی خطے پر بھی ابھی تحقیقات جاری ہیں۔ [12]

نظام شمسی کے غیر مرسوم حصوں میں نئے اجسام کی دریافت کے امکان کو مسترد نہیں کیا جا سکتا۔

کہکشاں میں محل وقوع

ہماری کہکشاں میں سورج کا محل وقوع

نظام شمسی جس کہکشاں میں واقع ہے اس کا نام جادہ شیر (Milky Way) ہے۔ یہ ایک barred spiral کہکشاں ہے. اس کا قطر ایک لاکھ نوری سالوں پر محیط ہے اور اس میں 2 کھرب ستارے موجود ہیں۔ [13] ہمارا سورج اس کہکشاں کے بیرونی بازؤں میں سے ایک، اورائن بازو یا مقامی spur میں موجود ہے۔ [14] سورج سے ہماری کہکشاں کا مرکز تقریباًً 25,000 سے 28,000 نوری سال کی دوری پر ہے اور یہ کہکشاں کے مرکز کے گرد تقریباًً 220 کلومیٹر فی سیکنڈ کے رفتار سے گردش کر رہا ہے۔ اس رفتار سے اسے ایک چکر پورا کرنے میں اندازاًً 22.5 سے 25 کروڑ سال لگتے ہیں۔ اس چکر کو نظام شمسی کا کہکشانئی سال (galactic year) بھی کہتے ہیں۔ [15]

ماہرین کے خیال میں سورج کے اس محل وقوع کا زمین پر زندگی کے ارتقا میں بہت اہم کردار ہے۔ سورج کا مدار تقریباًً دائروی ہے اور یہ اسی رفتار سے کہکشاں کے مرکز کے گرد گردش کر رہا ہے جس رفتار سے کہکشاں کے بازو گردش کرتے ہیں۔ رفتار کی اس یکسانیت کے باعث سورج ان بازؤں میں سے کبھی کبھار ہی گزرتا ہے۔ چونکہ ان بازؤں میں خطرناک سپر نووا کی کافی کثرت پائی جاتی ہے، سورج کا ان میں سے نہ گزرنا زمین کو ان خطرناک اثرات سے نسبتاً محفوظ رکھتا ہے اور زندگی کو ارتقا کا موقع فراہم کرتا ہے۔ [16] سورج ستاروں کی گنجان آبادی والے مرکزی خطے سے بھی کافی فاصلے پر ہے۔ اگر سورج مرکز کے قریب واقع ہوتا تو دوسرے ستاروں کے قریب ہونے کے باعث ان کی کشش ثقل اورت بادل کے اجسام کو مسلسل انکے مداروں سے ہٹا کر اندرونی نظام شمسی کی جانب بھیجتی رہتی۔ ان میں سے بہت سے اجسام زمین سے ٹکرا کر زندگی کے لئے تباہ کن ثابت ہو سکتے تھے۔ کہکشاں کے مرکز سے آنے والی برقناطیسی لہریں پیچیدہ جانداروں کے ارتقا میں خلل انداز بھی ہو سکتی تھیں۔[16]

حوالہ جات

  1. ^ Akwagyiram, Alexis الوداع پلوٹو؟
  2. ^ The Final IAU Resolution on the definition of “planet” ready for voting IAU 2006-08-24
  3. ^ nineplanets.org An Overview of the Solar System
  4. ^ Amir Alexander New Horizons Set to Launch on 9-Year Voyage to Pluto and the Kuiper Belt The Planetary Society 2006
  5. ^ M Woolfson The origin and evolution of the solar system University of York
  6. ^ Voyager Enters Solar System’s Final Frontier
  7. ^ Interstellar space, and step on it
  8. ^ Rapid collisional evolution of comets during the formation of the Oort cloud
  9. ^ The Kuiper Belt and the Oort Cloud
  10. ^ Mike Brown. Sedna CalTtech 2007-05-02
  11. ^ T. Encrenaz, JP. Bibring, M. Blanc, MA. Barucci, F. Roques, PH. Zarka The Solar System: Third edition Springer
  12. ^ Durda D.D.; Stern S.A.; Colwell W.B.; Parker J.W.; Levison H.F.; Hassler D.M. A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images 2006-07-23
  13. ^ A.D. Dolgov Magnetic fields in cosmology 2003
  14. ^ R. Drimmel, D. N. Spergel Three Dimensional Structure of the Milky Way Disk 2001
  15. ^ Stacy Leong Period of the Sun’s Orbit around the Galaxy (Cosmic Year) 2002
  16. ^ 16.0 16.1 Leslie Mullen Galactic Habitable Zones Astrobiology Magazine 2001

 

 

 

 

 

This article is about the Sun and its planetary system. For other systems, see planetary system and star system. For a list of physical and orbital statistics for the Solar System’s largest bodies, see List of gravitationally rounded objects of the Solar System

Planets and dwarf planets of the Solar System. Sizes are to scale, but relative distances from the Sun are not.

Solar System showing plane of the Earth’s orbit around the Sun in 3D view with only Mercury, Venus, Earth and Mars

Solar system showing the plane of the ecliptic of the Earth’s orbit around the Sun in 3D view showing Mercury, Venus, Earth, Mars and Jupiter making one full revolution. Saturn and Uranus also appear in their own respective orbits around the Sun

The Solar System[a] consists of the Sun and the astronomical objects bound to it by gravity, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets[e] whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are composed largely of ices, such as water, ammonia and methane, and are often referred to separately as “ice giants”.

The Solar System is also home to a number of regions populated by smaller objects. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. Beyond Neptune’s orbit lie the Kuiper belt and scattered disc; linked populations of trans-Neptunian objects composed mostly of ices such as water, ammonia and methane. Within these populations, five individual objects, Ceres, Pluto, Haumea, Makemake and Eris, are recognized to be large enough to have been rounded by their own gravity, and are thus termed dwarf planets.[e] In addition to thousands of small bodies[e] in those two regions, various other small body populations, such as comets, centaurs and interplanetary dust, freely travel between regions.

Six of the planets and three of the dwarf planets are orbited by natural satellites,[b] usually termed “moons” after Earth’s Moon. Each of the outer planets is encircled by planetary rings of dust and other particles.

The solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc. The hypothetical Oort cloud, which acts as the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere.

Discovery and exploration

For many thousands of years, humanity, with a few notable exceptions, did not recognize the existence of the Solar System. People believed the Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos,[1] Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system.[2] His 17th-century successors, Galileo Galilei, Johannes Kepler and Isaac Newton, developed an understanding of physics that led to the gradual acceptance of the idea that the Earth moves around the Sun and that the planets are governed by the same physical laws that governed the Earth. Additionally, the invention of the telescope led to the discovery of further planets and moons. In more recent times, improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena such as mountains and craters, and seasonal meteorological phenomena such as clouds, dust storms and ice caps on the other planets.

Structure

The orbits of the bodies in the Solar System to scale (clockwise from top left)

The principal component of the Solar System is the Sun, a main sequence G2 star that contains 99.86 percent of the system’s known mass and dominates it gravitationally.[3] The Sun’s four largest orbiting bodies, the gas giants, account for 99 percent of the remaining mass, with Jupiter and Saturn together comprising more than 90 percent.[c]

Most large objects in orbit around the Sun lie near the plane of Earth’s orbit, known as the ecliptic. The planets are very close to the ecliptic while comets and Kuiper belt objects are frequently at significantly greater angles to it.[4][5] All the planets and most other objects orbit the Sun in the same direction that the Sun is rotating (counter-clockwise, as viewed from above the Sun’s north pole).[6] There are exceptions, such as Halley’s Comet.

The overall structure of the charted regions of the Solar System consists of the Sun, four relatively small inner planets surrounded by a belt of rocky asteroids, and four gas giants surrounded by the outer Kuiper belt of icy objects. Astronomers sometimes informally divide this structure into separate regions. The inner Solar System includes the four terrestrial planets and the main asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giant planets.[7] Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.[8]

Kepler’s laws of planetary motion describe the orbits of objects about the Sun. Following Kepler’s laws, each object travels along an ellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) travel more quickly, as they are more affected by the Sun’s gravity. On an elliptical orbit, a body’s distance from the Sun varies over the course of its year. A body’s closest approach to the Sun is called its perihelion, while its most distant point from the Sun is called its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids and Kuiper belt objects follow highly elliptical orbits.

Due to the vast distances involved, many representations of the Solar System show orbits the same distance apart. In reality, with a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between it and the previous orbit. For example, Venus is approximately 0.33 astronomical units (AU)[d] farther out from the Sun than Mercury, while Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus. Attempts have been made to determine a relationship between these orbital distances (for example, the Titius–Bode law),[9] but no such theory has been accepted.

Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites, or moons (two of which are larger than the planet Mercury), or, in the case of the four gas giants, by planetary rings; thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.

Composition

The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium.[10] Jupiter and Saturn, which comprise nearly all the remaining matter, possess atmospheres composed of roughly 99% of those same elements.[11][12] A composition gradient exists in the Solar System, created by heat and light pressure from the Sun; those objects closer to the Sun, which are more affected by heat and light pressure, are composed of elements with high melting points. Objects farther from the Sun are composed largely of materials with lower melting points.[13] The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, and it lies at roughly 4 AU from the Sun.[14]

The objects of the inner Solar System are composed mostly of rock,[15] the collective name for compounds with high melting points, such as silicates, iron or nickel, that remained solid under almost all conditions in the protoplanetary nebula.[16] Jupiter and Saturn are composed mainly of gases, the astronomical term for materials with extremely low melting points and high vapor pressure such as molecular hydrogen, helium, and neon, which were always in the gaseous phase in the nebula.[16] Ices, like water, methane, ammonia, hydrogen sulfide and carbon dioxide,[15] have melting points up to a few hundred kelvins, while their phase depends on the ambient pressure and temperature.[16] They can be found as ices, liquids, or gases in various places in the Solar System, while in the nebula they were either in the solid or gaseous phase.[16] Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called “ice giants“) and the numerous small objects that lie beyond Neptune’s orbit.[15][17] Together, gases and ices are referred to as volatiles.[18]

Sun

Main article: Sun

The Sun is the Solar System’s star, and by far its chief component. Its large mass (332,900 Earth masses)[19] produces temperatures and densities in its core great enough to sustain nuclear fusion,[20] which releases enormous amounts of energy, mostly radiated into space as electromagnetic radiation, peaking in the 400–700 nm band we call visible light.[21]

The Sun is classified as a type G2 yellow dwarf, but this name is misleading as, compared to the majority of stars in our galaxy, the Sun is rather large and bright.[22] Stars are classified by the Hertzsprung–Russell diagram, a graph that plots the brightness of stars with their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence, and the Sun lies right in the middle of it. However, stars brighter and hotter than the Sun are rare, while substantially dimmer and cooler stars, known as red dwarfs, are common, making up 85 percent of the stars in the galaxy.[22][23]

Evidence suggests that the Sun’s position on the main sequence puts it in the “prime of life” for a star, in that it has not yet exhausted its store of hydrogen for nuclear fusion. The Sun is growing brighter; early in its history it was 70 percent as bright as it is today.[24]

The Sun is a population I star; it was born in the later stages of the universe’s evolution, and thus contains more elements heavier than hydrogen and helium (“metals” in astronomical parlance) than older population II stars.[25] Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, while stars born later have more. This high metallicity is thought to have been crucial to the Sun’s developing a planetary system, because planets form from accretion of “metals”.[26]

Interplanetary medium

Along with light, the Sun radiates a continuous stream of charged particles (a plasma) known as the solar wind. This stream of particles spreads outwards at roughly 1.5 million kilometres per hour,[27] creating a tenuous atmosphere (the heliosphere) that permeates the Solar System out to at least 100 AU (see heliopause).[28] This is known as the interplanetary medium. Activity on the Sun’s surface, such as solar flares and coronal mass ejections, disturb the heliosphere, creating space weather and causing geomagnetic storms.[29] The largest structure within the heliosphere is the heliospheric current sheet, a spiral form created by the actions of the Sun’s rotating magnetic field on the interplanetary medium.[30][31]

Earth’s magnetic field stops its atmosphere from being stripped away by the solar wind. Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their atmospheres to gradually bleed away into space.[32] Coronal mass ejections and similar events blow a magnetic field and huge quantities of material from the surface of the Sun. The interaction of this magnetic field and material with Earth’s magnetic field funnels charged particles into the Earth’s upper atmosphere, where its interactions create aurorae seen near the magnetic poles.

Cosmic rays originate outside the Solar System. The heliosphere partially shields the Solar System, and planetary magnetic fields (for those planets that have them) also provide some protection. The density of cosmic rays in the interstellar medium and the strength of the Sun’s magnetic field change on very long timescales, so the level of cosmic radiation in the Solar System varies, though by how much is unknown.[33]

The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.[34] The second extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.[35][36]

Inner Solar System

The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids.[37] Composed mainly of silicates and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between Jupiter and Saturn.

Inner planets

Main article: Terrestrial planet

The inner planets. From left to right: Mercury, Venus, Earth, and Mars (sizes to scale, interplanetary distances not)

The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather; all have impact craters and tectonic surface features such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets that are closer to the Sun than Earth is (i.e. Mercury and Venus).

Mercury

Mercury (0.4 AU from the Sun) is the closest planet to the Sun and the smallest planet in the Solar System (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or rupes, probably produced by a period of contraction early in its history.[38] Mercury’s almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.[39] Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact, and that it was prevented from fully accreting by the young Sun’s energy.[40][41]

Venus

Venus (0.7 AU from the Sun) is close in size to Earth (0.815 Earth masses), and, like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere and evidence of internal geological activity. However, it is much drier than Earth and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 °C, most likely due to the amount of greenhouse gases in the atmosphere.[42] No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is regularly replenished by volcanic eruptions.[43]

Earth

Earth (1 AU from the Sun) is the largest and densest of the inner planets, the only one known to have current geological activity, and is the only place in the universe where life is known to exist.[44] Its liquid hydrosphere is unique among the terrestrial planets, and it is also the only planet where plate tectonics has been observed. Earth’s atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free oxygen.[45] It has one natural satellite, the Moon, the only large satellite of a terrestrial planet in the Solar System.

Mars

Mars (1.5 AU from the Sun) is smaller than Earth and Venus (0.107 Earth masses). It possesses an atmosphere of mostly carbon dioxide with a surface pressure of 6.1 millibars (roughly 0.6 percent that of the Earth’s).[46] Its surface, peppered with vast volcanoes such as Olympus Mons and rift valleys such as Valles Marineris, shows geological activity that may have persisted until as recently as 2 million years ago.[47] Its red colour comes from iron oxide (rust) in its soil.[48] Mars has two tiny natural satellites (Deimos and Phobos) thought to be captured asteroids.[49]

Asteroid belt

Main article: Asteroid belt

Image of the main asteroid belt and the Trojan asteroids

Asteroids are mostly small Solar System bodies[e] composed mainly of refractory rocky and metallic minerals.[50]

The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System’s formation that failed to coalesce because of the gravitational interference of Jupiter.[51]

Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids save the largest, Ceres, are classified as small Solar System bodies, but some asteroids such as Vesta and Hygiea may be reclassed as dwarf planets if they are shown to have achieved hydrostatic equilibrium.[52]

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter.[53] Despite this, the total mass of the main belt is unlikely to be more than a thousandth of that of the Earth.[54] The main belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10−4 m are called meteoroids.[55]

Ceres

Ceres (2.77 AU) is the largest body in the asteroid belt and is classified as a dwarf planet.[e] It has a diameter of slightly under 1000 km, and a mass large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in the 19th century, but was reclassified as an asteroid in the 1850s as further observation revealed additional asteroids.[56] It was again reclassified in 2006 as a dwarf planet.

Asteroid groups

Asteroids in the main belt are divided into asteroid groups and families based on their orbital characteristics. Asteroid moons are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains main-belt comets, which may have been the source of Earth’s water.[57]

Trojan asteroids are located in either of Jupiter’s L4 or L5 points (gravitationally stable regions leading and trailing a planet in its orbit); the term “Trojan” is also used for small bodies in any other planetary or satellite Lagrange point. Hilda asteroids are in a 2:3 resonance with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.[58]

The inner Solar System is also dusted with rogue asteroids, many of which cross the orbits of the inner planets.[59]

Outer Solar System

The outer region of the Solar System is home to the gas giants and their large moons. Many short period comets, including the centaurs, also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles such as water, ammonia and methane, than the rocky denizens of the inner Solar System, as the colder temperatures allow these compounds to remain solid.

Outer planets

Main articles: Outer planets and Gas giant

From top to bottom: Neptune, Uranus, Saturn, and Jupiter (not to scale)

The four outer planets, or gas giants (sometimes called Jovian planets), collectively make up 99 percent of the mass known to orbit the Sun.[c] Jupiter and Saturn are each many tens of times the mass of the Earth and consist overwhelmingly of hydrogen and helium; Uranus and Neptune are far less massive (<20 Earth masses) and possess more ices in their makeup. For these reasons, some astronomers suggest they belong in their own category, “ice giants.”[60] All four gas giants have rings, although only Saturn’s ring system is easily observed from Earth. The term outer planet should not be confused with superior planet, which designates planets outside Earth’s orbit and thus includes both the outer planets and Mars.

Jupiter

Jupiter (5.2 AU), at 318 Earth masses, is 2.5 times the mass of all the other planets put together. It is composed largely of hydrogen and helium. Jupiter’s strong internal heat creates a number of semi-permanent features in its atmosphere, such as cloud bands and the Great Red Spot.
Jupiter has 63 known satellites. The four largest, Ganymede, Callisto, Io, and Europa, show similarities to the terrestrial planets, such as volcanism and internal heating.[61] Ganymede, the largest satellite in the Solar System, is larger than Mercury.

Saturn

Saturn (9.5 AU), distinguished by its extensive ring system, has several similarities to Jupiter, such as its atmospheric composition and magnetosphere. Although Saturn has 60% of Jupiter’s volume, it is less than a third as massive, at 95 Earth masses, making it the least dense planet in the Solar System. The rings of Saturn are made up of small ice and rock particles.
Saturn has 62 confirmed satellites; two of which, Titan and Enceladus, show signs of geological activity, though they are largely made of ice.[62] Titan, the second largest moon in the Solar System, is larger than Mercury and the only satellite in the Solar System with a substantial atmosphere.

Uranus

Uranus (19.6 AU), at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its axial tilt is over ninety degrees to the ecliptic. It has a much colder core than the other gas giants, and radiates very little heat into space.[63]
Uranus has 27 known satellites, the largest ones being Titania, Oberon, Umbriel, Ariel and Miranda.

Neptune

Neptune (30 AU), though slightly smaller than Uranus, is more massive (equivalent to 17 Earths) and therefore more dense. It radiates more internal heat, but not as much as Jupiter or Saturn.[64]
Neptune has 13 known satellites. The largest, Triton, is geologically active, with geysers of liquid nitrogen.[65] Triton is the only large satellite with a retrograde orbit. Neptune is accompanied in its orbit by a number of minor planets, termed Neptune Trojans, that are in 1:1 resonance with it.

Comets

Main article: Comet

Comet Hale-Bopp

Comets are small Solar System bodies,[e] typically only a few kilometres across, composed largely of volatile ices. They have highly eccentric orbits, generally a perihelion within the orbits of the inner planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its proximity to the Sun causes its icy surface to sublimate and ionise, creating a coma: a long tail of gas and dust often visible to the naked eye.

Short-period comets have orbits lasting less than two hundred years. Long-period comets have orbits lasting thousands of years. Short-period comets are believed to originate in the Kuiper belt, while long-period comets, such as Hale-Bopp, are believed to originate in the Oort cloud. Many comet groups, such as the Kreutz Sungrazers, formed from the breakup of a single parent.[66] Some comets with hyperbolic orbits may originate outside the Solar System, but determining their precise orbits is difficult.[67] Old comets that have had most of their volatiles driven out by solar warming are often categorised as asteroids.[68]

Centaurs

The centaurs are icy comet-like bodies with a semi-major axis greater than Jupiter’s (5.5 AU) and less than Neptune’s (30 AU). The largest known centaur, 10199 Chariklo, has a diameter of about 250 km.[69] The first centaur discovered, 2060 Chiron, has also been classified as comet (95P) since it develops a coma just as comets do when they approach the Sun.[70]

Trans-Neptunian region

The area beyond Neptune, or the “trans-Neptunian region“, is still largely unexplored. It appears to consist overwhelmingly of small worlds (the largest having a diameter only a fifth that of the Earth and a mass far smaller than that of the Moon) composed mainly of rock and ice. This region is sometimes known as the “outer Solar System”, though others use that term to mean the region beyond the asteroid belt.

Kuiper belt

Main article: Kuiper belt

Plot of all known Kuiper belt objects, set against the four outer planets

The Kuiper belt, the region’s first formation, is a great ring of debris similar to the asteroid belt, but composed mainly of ice.[71] It extends between 30 and 50 AU from the Sun. Though it contains at least three dwarf planets, it is composed mainly of small Solar System bodies. However, many of the largest Kuiper belt objects, such as Quaoar, Varuna, and Orcus, may be reclassified as dwarf planets. There are estimated to be over 100,000 Kuiper belt objects with a diameter greater than 50 km, but the total mass of the Kuiper belt is thought to be only a tenth or even a hundredth the mass of the Earth.[72] Many Kuiper belt objects have multiple satellites,[73] and most have orbits that take them outside the plane of the ecliptic.[74]

The Kuiper belt can be roughly divided into the “classical” belt and the resonances.[71] Resonances are orbits linked to that of Neptune (e.g. twice for every three Neptune orbits, or once for every two). The first resonance begins within the orbit of Neptune itself. The classical belt consists of objects having no resonance with Neptune, and extends from roughly 39.4 AU to 47.7 AU.[75] Members of the classical Kuiper belt are classified as cubewanos, after the first of their kind to be discovered, (15760) 1992 QB1, and are still in near primordial, low-eccentricity orbits.[76]

Pluto and Charon

The EarthDysnomiaErisCharonPlutoMakemakeHaumeaSednaOrcus2007 OR10QuaoarFile:EightTNOs.png

Artistic comparison of Eris, Pluto, Makemake, Haumea, Sedna, Orcus, 2007 OR10, Quaoar, and Earth (scales are outdated)

Pluto (39 AU average), a dwarf planet, is the largest known object in the Kuiper belt. When discovered in 1930, it was considered to be the ninth planet; this changed in 2006 with the adoption of a formal definition of planet. Pluto has a relatively eccentric orbit inclined 17 degrees to the ecliptic plane and ranging from 29.7 AU from the Sun at perihelion (within the orbit of Neptune) to 49.5 AU at aphelion.
Charon, Pluto’s largest moon, is sometimes described as part of a binary system with Pluto, as the two bodies orbit a barycenter of gravity above their surfaces (i.e., they appear to “orbit each other”). Beyond Charon, two much smaller moons, Nix and Hydra, orbit within the system.
Pluto has a 3:2 resonance with Neptune, meaning that Pluto orbits twice round the Sun for every three Neptunian orbits. Kuiper belt objects whose orbits share this resonance are called plutinos.[77]

Haumea and Makemake

Haumea (43.34 AU average), and Makemake (45.79 AU average), while smaller than Pluto, are the largest known objects in the classical Kuiper belt (that is, they are not in a confirmed resonance with Neptune). Haumea is an egg-shaped object with two moons. Makemake is the brightest object in the Kuiper belt after Pluto. Originally designated 2003 EL61 and 2005 FY9 respectively, they were given names and designated dwarf planets in 2008.[78] Their orbits are far more inclined than Pluto’s, at 28° and 29°.[79]

Scattered disc

Main article: Scattered disc

The scattered disc, which overlaps the Kuiper belt but extends much further outwards, is thought to be the source of short-period comets. Scattered disc objects are believed to have been ejected into erratic orbits by the gravitational influence of Neptune’s early outward migration. Most scattered disc objects (SDOs) have perihelia within the Kuiper belt but aphelia as far as 150 AU from the Sun. SDOs’ orbits are also highly inclined to the ecliptic plane, and are often almost perpendicular to it. Some astronomers consider the scattered disc to be merely another region of the Kuiper belt, and describe scattered disc objects as “scattered Kuiper belt objects.”[80] Some astronomers also classify centaurs as inward-scattered Kuiper belt objects along with the outward-scattered residents of the scattered disc.[81]

Eris

Eris (68 AU average) is the largest known scattered disc object, and caused a debate about what constitutes a planet, since it is 25% more massive than Pluto[82] and about the same diameter. It is the most massive of the known dwarf planets. It has one moon, Dysnomia. Like Pluto, its orbit is highly eccentric, with a perihelion of 38.2 AU (roughly Pluto’s distance from the Sun) and an aphelion of 97.6 AU, and steeply inclined to the ecliptic plane.

Farthest regions

The point at which the Solar System ends and interstellar space begins is not precisely defined, since its outer boundaries are shaped by two separate forces: the solar wind and the Sun’s gravity. The outer limit of the solar wind’s influence is roughly four times Pluto’s distance from the Sun; this heliopause is considered the beginning of the interstellar medium.[28] However, the Sun’s Roche sphere, the effective range of its gravitational dominance, is believed to extend up to a thousand times farther.[83]

Heliopause

NASA image of the heliosheath and heliopause

The heliosphere is divided into two separate regions. The solar wind travels at roughly 400 km/s until it collides with the interstellar wind; the flow of plasma in the interstellar medium. The collision occurs at the termination shock, which is roughly 80–100 AU from the Sun upwind of the interstellar medium and roughly 200 AU from the Sun downwind.[84] Here the wind slows dramatically, condenses and becomes more turbulent,[84] forming a great oval structure known as the heliosheath. This structure is believed to look and behave very much like a comet’s tail, extending outward for a further 40 AU on the upwind side but tailing many times that distance downwind; but evidence from the Cassini and Interstellar Boundary Explorer spacecraft has suggested that it is in fact forced into a bubble shape by the constraining action of the interstellar magnetic field.[85] Both Voyager 1 and Voyager 2 are reported to have passed the termination shock and entered the heliosheath, at 94 and 84 AU from the Sun, respectively.[86][87] The outer boundary of the heliosphere, the heliopause, is the point at which the solar wind finally terminates and is the beginning of interstellar space.[28]

The shape and form of the outer edge of the heliosphere is likely affected by the fluid dynamics of interactions with the interstellar medium[84] as well as solar magnetic fields prevailing to the south, e.g. it is bluntly shaped with the northern hemisphere extending 9 AU farther than the southern hemisphere. Beyond the heliopause, at around 230 AU, lies the bow shock, a plasma “wake” left by the Sun as it travels through the Milky Way.[88]

No spacecraft have yet passed beyond the heliopause, so it is impossible to know for certain the conditions in local interstellar space. It is expected that NASA‘s Voyager spacecraft will pass the heliopause some time in the next decade and transmit valuable data on radiation levels and solar wind back to the Earth.[89] How well the heliosphere shields the Solar System from cosmic rays is poorly understood. A NASA-funded team has developed a concept of a “Vision Mission” dedicated to sending a probe to the heliosphere.[90][91]

Oort cloud

Main article: Oort cloud

An artist’s rendering of the Oort Cloud, the Hills Cloud, and the Kuiper belt (inset)

The hypothetical Oort cloud is a spherical cloud of up to a trillion icy objects that is believed to be the source for all long-period comets and to surround the Solar System at roughly 50,000 AU (around 1 light-year (LY)), and possibly to as far as 100,000 AU (1.87 LY). It is believed to be composed of comets that were ejected from the inner Solar System by gravitational interactions with the outer planets. Oort cloud objects move very slowly, and can be perturbed by infrequent events such as collisions, the gravitational effects of a passing star, or the galactic tide, the tidal force exerted by the Milky Way.[92][93]

Sedna

90377 Sedna (525.86 AU average) is a large, reddish Pluto-like object with a gigantic, highly elliptical orbit that takes it from about 76 AU at perihelion to 928 AU at aphelion and takes 12,050 years to complete. Mike Brown, who discovered the object in 2003, asserts that it cannot be part of the scattered disc or the Kuiper belt as its perihelion is too distant to have been affected by Neptune’s migration. He and other astronomers consider it to be the first in an entirely new population, which also may include the object 2000 CR105, which has a perihelion of 45 AU, an aphelion of 415 AU, and an orbital period of 3,420 years.[94] Brown terms this population the “Inner Oort cloud,” as it may have formed through a similar process, although it is far closer to the Sun.[95] Sedna is very likely a dwarf planet, though its shape has yet to be determined with certainty.

Boundaries

Much of our Solar System is still unknown. The Sun’s gravitational field is estimated to dominate the gravitational forces of surrounding stars out to about two light years (125,000 AU). Lower estimates for the radius of the Oort cloud, by contrast, do not place it farther than 50,000 AU.[96] Despite discoveries such as Sedna, the region between the Kuiper belt and the Oort cloud, an area tens of thousands of AU in radius, is still virtually unmapped. There are also ongoing studies of the region between Mercury and the Sun.[97] Objects may yet be discovered in the Solar System’s uncharted regions.

Galactic context

Location of the Solar System within our galaxy

The Solar System is located in the Milky Way galaxy, a barred spiral galaxy with a diameter of about 100,000 light-years containing about 200 billion stars.[98] Our Sun resides in one of the Milky Way’s outer spiral arms, known as the Orion Arm or Local Spur.[99] The Sun lies between 25,000 and 28,000 light years from the Galactic Centre,[100] and its speed within the galaxy is about 220 kilometres per second, so that it completes one revolution every 225–250 million years. This revolution is known as the Solar System’s galactic year.[101] The solar apex, the direction of the Sun’s path through interstellar space, is near the constellation of Hercules in the direction of the current location of the bright star Vega.[102] The plane of the ecliptic lies at an angle of about 60° to the galactic plane.[f]

The Solar System’s location in the galaxy is very likely a factor in the evolution of life on Earth. Its orbit is close to being circular and is at roughly the same speed as that of the spiral arms, which means it passes through them only rarely. Since spiral arms are home to a far larger concentration of potentially dangerous supernovae, this has given Earth long periods of interstellar stability for life to evolve.[103] The Solar System also lies well outside the star-crowded environs of the galactic centre. Near the centre, gravitational tugs from nearby stars could perturb bodies in the Oort Cloud and send many comets into the inner Solar System, producing collisions with potentially catastrophic implications for life on Earth. The intense radiation of the galactic centre could also interfere with the development of complex life.[103] Even at the Solar System’s current location, some scientists have hypothesised that recent supernovae may have adversely affected life in the last 35,000 years by flinging pieces of expelled stellar core towards the Sun as radioactive dust grains and larger, comet-like bodies.[104]

Neighbourhood

The immediate galactic neighbourhood of the Solar System is known as the Local Interstellar Cloud or Local Fluff, an area of denser cloud in an otherwise sparse region known as the Local Bubble, an hourglass-shaped cavity in the interstellar medium roughly 300 light years across. The bubble is suffused with high-temperature plasma that suggests it is the product of several recent supernovae.[105]

There are relatively few stars within ten light years (95 trillion km) of the Sun. The closest is the triple star system Alpha Centauri, which is about 4.4 light years away. Alpha Centauri A and B are a closely tied pair of Sun-like stars, while the small red dwarf Alpha Centauri C (also known as Proxima Centauri) orbits the pair at a distance of 0.2 light years. The stars next closest to the Sun are the red dwarfs Barnard’s Star (at 5.9 light years), Wolf 359 (7.8 light years) and Lalande 21185 (8.3 light years). The largest star within ten light years is Sirius, a bright main sequence star roughly twice the Sun’s mass and orbited by a white dwarf called Sirius B. It lies 8.6 light years away. The remaining systems within ten light years are the binary red dwarf system Luyten 726-8 (8.7 light years) and the solitary red dwarf Ross 154 (9.7 light years).[106] Our closest solitary sun-like star is Tau Ceti, which lies 11.9 light years away. It has roughly 80 percent the Sun’s mass, but only 60 percent its luminosity.[107] The closest known extrasolar planet to the Sun lies around the star Epsilon Eridani, a star slightly dimmer and redder than the Sun, which lies 10.5 light years away. Its one confirmed planet, Epsilon Eridani b, is roughly 1.5 times Jupiter’s mass and orbits its star every 6.9 years.[108]

A series of five star maps that show from left to right our location in the Solar System, in the Sun's neighborhood of stars, in the local area of the Milky Way galaxy, in the Local Group of galaxies, and in the Supercluster of galaxies

A diagram of our location in the Local Supercluster. (See also Earth’s location in the Universe.)

Formation and evolution

Projected timeline of the Sun's life.

The Solar System formed from the gravitational collapse of a giant molecular cloud 4.568 billion years ago.[109] This initial cloud was likely several light-years across and probably birthed several stars.[110]

As the region that would become the Solar System, known as the pre-solar nebula,[111] collapsed, conservation of angular momentum made it rotate faster. The centre, where most of the mass collected, became increasingly hotter than the surrounding disc.[110] As the contracting nebula rotated, it began to flatten into a spinning protoplanetary disc with a diameter of roughly 200 AU[110] and a hot, dense protostar at the centre.[112][113] At this point in its evolution, the Sun is believed to have been a T Tauri star. Studies of T Tauri stars show that they are often accompanied by discs of pre-planetary matter with masses of 0.001–0.1 solar masses, with the vast majority of the mass of the nebula in the star itself.[114] The planets formed by accretion from this disk.[115]

Within 50 million years, the pressure and density of hydrogen in the centre of the protostar became great enough for it to begin thermonuclear fusion.[116] The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved, with the thermal energy countering the force of gravitational contraction. At this point the Sun became a full-fledged main sequence star.[117]

The Solar System as we know it today will last until the Sun begins its evolution off of the main sequence of the Hertzsprung–Russell diagram. As the Sun burns through its supply of hydrogen fuel, the energy output supporting the core tends to decrease, causing it to collapse in on itself. This increase in pressure heats the core, so it burns even faster. As a result, the Sun is growing brighter at a rate of roughly ten percent every 1.1 billion years.[118]

Around 5.4 billion years from now, the hydrogen in the core of the Sun will have been entirely converted to helium, ending the main sequence phase. As the hydrogen reactions shut down, the core will contract further, increasing pressure and temperature, causing fusion to commence via the helium process. Helium in the core burns at a much hotter temperature, and the energy output will be much greater than during the hydrogen process. At this time, the outer layers of the Sun will expand to roughly up to 260 times its current diameter; the Sun will become a red giant. Because of its vastly increased surface area, the surface of the Sun will be considerably cooler than it is on the main sequence (2600 K at the coolest).[119]

Eventually, helium in the core will exhaust itself at a much faster rate than the hydrogen, and the Sun’s helium burning phase will be but a fraction of the time compared to the hydrogen burning phase. The Sun is not massive enough to commence fusion of heavier elements, and nuclear reactions in the core will dwindle. Its outer layers will fall away into space, leaving a white dwarf, an extraordinarily dense object, half the original mass of the Sun but only the size of the Earth.[120] The ejected outer layers will form what is known as a planetary nebula, returning some of the material that formed the Sun to the interstellar medium.

Notes

  1. ^ Capitalization of the name varies. The IAU, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects (Solar System). However, the name is commonly rendered in lower case (solar system) – as, for example, in the Oxford English Dictionary and Merriam-Webster’s 11th Collegiate Dictionary
  2. ^ See List of natural satellites for the full list of natural satellites of the eight planets and five dwarf planets.
  3. ^ The mass of the Solar System excluding the Sun, Jupiter and Saturn can be determined by adding together all the calculated masses for its largest objects and using rough calculations for the masses of the Oort cloud (estimated at roughly 3 Earth masses),[121] the Kuiper belt (estimated at roughly 0.1 Earth mass)[72] and the asteroid belt (estimated to be 0.0005 Earth mass)[54] for a total, rounded upwards, of ~37 Earth masses, or 8.1 percent the mass in orbit around the Sun. With the combined masses of Uranus and Neptune (~31 Earth masses) subtracted, the remaining ~6 Earth masses of material comprise 1.3 percent of the total.
  4. ^ Astronomers measure distances within the Solar System in astronomical units (AU). One AU equals the average distance between the centers of Earth and the Sun, or 149,598,000 km. Pluto is about 38 AU from the Sun and Jupiter is about 5.2 AU from the Sun. One light-year is 63,240 AU.
  5. ^ According to current definitions, objects in orbit around the Sun are classed dynamically and physically into three categories: planets, dwarf planets and small Solar System bodies. A planet is any body in orbit around the Sun that has enough mass to form itself into a spherical shape and has cleared its immediate neighbourhood of all smaller objects. By this definition, the Solar System has eight known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto does not fit this definition, as it has not cleared its orbit of surrounding Kuiper belt objects.[122] A dwarf planet is a celestial body orbiting the Sun that is massive enough to be rounded by its own gravity but has not cleared its neighbouring region of planetesimals and is not a satellite.[122] By this definition, the Solar System has five known dwarf planets: Ceres, Pluto, Haumea, Makemake, and Eris.[78] Other objects may be classified in the future as dwarf planets, such as Sedna, Orcus, and Quaoar.[123] Dwarf planets that orbit in the trans-Neptunian region are called “plutoids“.[124] The remainder of the objects in orbit around the Sun are small Solar System bodies.[122]
  6. ^ If ψ is the angle between the north pole of the ecliptic and the north galactic polethen:
    cosψ = cos(βg)cos(βe)cos(αg − αe) + sin(βg)sin(βe),

    where βg = 27° 07′ 42.01″ and αg = 12h 51m 26.282 are the declination and right ascension of the north galactic pole,[125] while βe = 66° 33′ 38.6″ and αe = 18h 0m 00 are those for the north pole of the ecliptic. (Both pairs of coordinates are for J2000 epoch.) The result of the calculation is 60.19°.

References

  1. ^ WC Rufus (1923). “The astronomical system of Copernicus”. Popular Astronomy 31: 510. Bibcode 1923PA…..31..510R.
  2. ^ Weinert, Friedel (2009). Copernicus, Darwin, & Freud: revolutions in the history and philosophy of science. Wiley-Blackwell. p. 21. ISBN 9781405181839.
  3. ^ M Woolfson (2000). “The origin and evolution of the solar system”. Astronomy & Geophysics 41 (1): 1.12. doi:10.1046/j.1468-4004.2000.00012.x.
  4. ^ Harold F. Levison, Alessandro Morbidelli (2003). “The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration” (PDF). Retrieved 2007-06-25.
  5. ^ Harold F. Levison, Martin J Duncan (1997). “From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets”. Icarus 127 (1): 13–32. Bibcode 1997Icar..127…13L. doi:10.1006/icar.1996.5637.
  6. ^ Grossman, Lisa (13 August 2009). “Planet found orbiting its star backwards for first time”. NewScientist. Retrieved 10 October 2009.
  7. ^ nineplanets.org. “An Overview of the Solar System”. Retrieved 2007-02-15.
  8. ^ Amir Alexander (2006). “New Horizons Set to Launch on 9-Year Voyage to Pluto and the Kuiper Belt”. The Planetary Society. Retrieved 2006-11-08.
  9. ^ “Dawn: A Journey to the Beginning of the Solar System”. Space Physics Center: UCLA. 2005. Retrieved 2007-11-03.
  10. ^ “The Sun’s Vital Statistics”. Stanford Solar Center. Retrieved 2008-07-29., citing Eddy, J. (1979). A New Sun: The Solar Results From Skylab. NASA. p. 37. NASA SP-402.
  11. ^ Williams, Dr. David R. (September 7, 2006). “Saturn Fact Sheet”. NASA. Retrieved 2007-07-31.
  12. ^ Williams, Dr. David R. (November 16, 2004). “Jupiter Fact Sheet”. NASA. Retrieved 2007-08-08.
  13. ^ Paul Robert Weissman, Torrence V. Johnson (2007). Encyclopedia of the solar system. Academic Press. p. 615. ISBN 0120885891.
  14. ^ “Planet Formation (in the Solar System)”. University of Toronto. Retrieved 2011-07-11.
  15. ^ a b c Podolak, M.; Weizman, A.; Marley, M. (1995). “Comparative models of Uranus and Neptune”. Planetary & Space Sciences 43 (12): 1517–1522. Bibcode 1995P&SS…43.1517P. doi:10.1016/0032-0633(95)00061-5.
  16. ^ a b c d Podolak, M.; Podolak, J.I.; Marley, M.S. (2000). “Further investigations of random models of Uranus and Neptune”. Planetary & Spaces Sciences 48 (2–3): 143–151. Bibcode 2000P&SS…48..143P. doi:10.1016/S0032-0633(99)00088-4.
  17. ^ Michael Zellik (2002). Astronomy: The Evolving Universe (9th ed.). Cambridge University Press. p. 240. ISBN 0521800900. OCLC 46685453 223304585 46685453.
  18. ^ Placxo, Kevin W.; Gross, Michael (2006). Astrobiology: a brief introduction. JHU Press. p. 66. ISBN 9780801883675.
  19. ^ “Sun: Facts & Figures”. NASA. Archived from the original on 2008-01-02. Retrieved 2009-05-14.
  20. ^ Zirker, Jack B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 120–127. ISBN 9780691057811.
  21. ^ “Why is visible light visible, but not other parts of the spectrum?”. The Straight Dome. 2003. Retrieved 2009-05-14.
  22. ^ a b Than, Ker (January 30, 2006). “Astronomers Had it Wrong: Most Stars are Single”. SPACE.com. Retrieved 2007-08-01.
  23. ^ Smart, R. L.; Carollo, D.; Lattanzi, M. G.; McLean, B.; Spagna, A. (2001). “The Second Guide Star Catalogue and Cool Stars”. In Hugh R. A. Jones and Iain A. Steele. Ultracool Dwarfs: New Spectral Types L and T. Springer. pp. 119. Bibcode 2001udns.conf..119S.
  24. ^ Nir J. Shaviv (2003). “Towards a Solution to the Early Faint Sun Paradox: A Lower Cosmic Ray Flux from a Stronger Solar Wind”. Journal of Geophysical Research 108 (A12): 1437. arXiv:astroph/0306477. Bibcode 2003JGRA..108.1437S. doi:10.1029/2003JA009997.
  25. ^ T. S. van Albada, Norman Baker (1973). “On the Two Oosterhoff Groups of Globular Clusters”. Astrophysical Journal 185: 477–498. Bibcode 1973ApJ…185..477V. doi:10.1086/152434.
  26. ^ Charles H. Lineweaver (2001-03-09). “An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect”. Icarus 151 (2): 307–313. Bibcode 2001Icar..151..307L. doi:10.1006/icar.2001.6607.
  27. ^ “Solar Physics: The Solar Wind”. Marshall Space Flight Center. 2006-07-16. Retrieved 2006-10-03.
  28. ^ a b c “Voyager Enters Solar System’s Final Frontier”. NASA. Retrieved 2007-04-02.
  29. ^ Phillips, Tony (2001-02-15). “The Sun Does a Flip”. [email protected]. Retrieved 2007-02-04.
  30. ^ A Star with two North Poles, April 22, 2003, Science @ NASA
  31. ^ Riley, Pete (2002). “Modeling the heliospheric current sheet: Solar cycle variations”. Journal of Geophysical Research 107. Bibcode 2002JGRA.107g.SSH8R. doi:10.1029/2001JA000299.
  32. ^ Lundin, Richard (2001-03-09). “Erosion by the Solar Wind”. Science 291 (5510): 1909. doi:10.1126/science.1059763. PMID 11245195.
  33. ^ Langner, U. W.; M. S. Potgieter (2005). “Effects of the position of the solar wind termination shock and the heliopause on the heliospheric modulation of cosmic rays”. Advances in Space Research 35 (12): 2084–2090. Bibcode 2005AdSpR..35.2084L. doi:10.1016/j.asr.2004.12.005.
  34. ^ “Long-term Evolution of the Zodiacal Cloud”. 1998. Retrieved 2007-02-03.
  35. ^ “ESA scientist discovers a way to shortlist stars that might have planets”. ESA Science and Technology. 2003. Retrieved 2007-02-03.
  36. ^ Landgraf, M.; Liou, J.-C.; Zook, H. A.; Grün, E. (May 2002). “Origins of Solar System Dust beyond Jupiter”. The Astronomical Journal 123 (5): 2857–2861. Bibcode 2002AJ….123.2857L. doi:10.1086/339704. Retrieved 2007-02-09.
  37. ^ “Inner Solar System”. NASA Science (Planets). Retrieved 2009-05-09.
  38. ^ Schenk P., Melosh H. J. (1994), Lobate Thrust Scarps and the Thickness of Mercury’s Lithosphere, Abstracts of the 25th Lunar and Planetary Science Conference, 1994LPI….25.1203S
  39. ^ Bill Arnett (2006). “Mercury”. The Nine Planets. Retrieved 2006-09-14.
  40. ^ Benz, W., Slattery, W. L., Cameron, A. G. W. (1988), Collisional stripping of Mercury’s mantle, Icarus, v. 74, p. 516–528.
  41. ^ Cameron, A. G. W. (1985), The partial volatilization of Mercury, Icarus, v. 64, p. 285–294.
  42. ^ Mark Alan Bullock (1997) (PDF). The Stability of Climate on Venus. Southwest Research Institute. Retrieved 2006-12-26.
  43. ^ Paul Rincon (1999). “Climate Change as a Regulator of Tectonics on Venus” (PDF). Johnson Space Center Houston, TX, Institute of Meteoritics, University of New Mexico, Albuquerque, NM. Retrieved 2006-11-19.
  44. ^ “Is there life elsewhere?”. NASA Science (Big Questions). Retrieved 2009-05-21.
  45. ^ Anne E. Egger, M.A./M.S.. “Earth’s Atmosphere: Composition and Structure”. VisionLearning.com. Retrieved 2006-12-26.
  46. ^ David C. Gatling, Conway Leovy (2007). “Mars Atmosphere: History and Surface Interactions”. In Lucy-Ann McFadden et. al.. Encyclopaedia of the Solar System. pp. 301–314.
  47. ^ David Noever (2004). “Modern Martian Marvels: Volcanoes?”. NASA Astrobiology Magazine. Retrieved 2006-07-23.
  48. ^ “Mars: A Kid’s Eye View”. NASA. Retrieved 2009-05-14.
  49. ^ Scott S. Sheppard, David Jewitt, and Jan Kleyna (2004). “A Survey for Outer Satellites of Mars: Limits to Completeness”. Astronomical Journal. Retrieved 2006-12-26.
  50. ^ “Are Kuiper Belt Objects asteroids? Are large Kuiper Belt Objects planets?”. Cornell University. Retrieved 2009-03-01.
  51. ^ Petit, J.-M.; Morbidelli, A.; Chambers, J. (2001). “The Primordial Excitation and Clearing of the Asteroid Belt” (PDF). Icarus 153 (2): 338–347. Bibcode 2001Icar..153..338P. doi:10.1006/icar.2001.6702. Retrieved 2007-03-22.
  52. ^ “IAU Planet Definition Committee”. International Astronomical Union. 2006. Retrieved 2009-03-01.
  53. ^ “New study reveals twice as many asteroids as previously believed”. ESA. 2002. Retrieved 2006-06-23.
  54. ^ a b Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). “Hidden Mass in the Asteroid Belt”. Icarus 158 (1): 98–105. Bibcode 2002Icar..158…98K. doi:10.1006/icar.2002.6837.
  55. ^ Beech, M.; Duncan I. Steel (September 1995). “On the Definition of the Term Meteoroid”. Quarterly Journal of the Royal Astronomical Society 36 (3): 281–284. Bibcode 1995QJRAS..36..281B.
  56. ^ “History and Discovery of Asteroids” (DOC). NASA. Retrieved 2006-08-29.
  57. ^ Phil Berardelli (2006). “Main-Belt Comets May Have Been Source Of Earths Water”. SpaceDaily. Retrieved 2006-06-23.
  58. ^ Barucci, M. A.; Kruikshank, D.P.; Mottola S.; Lazzarin M. (2002). “Physical Properties of Trojan and Centaur Asteroids”. Asteroids III. Tucson, Arizona: University of Arizona Press. pp. 273–87.
  59. ^ A. Morbidelli, W. F. Bottke Jr., Ch. Froeschlé, P. Michel (January 2002). W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel. ed. “Origin and Evolution of Near-Earth Objects” (PDF). Asteroids III (University of Arizona Press): 409–422. Bibcode 2002aste.conf..409M.
  60. ^ Jack J. Lissauer, David J. Stevenson (2006). “Formation of Giant Planets” (PDF). NASA Ames Research Center; California Institute of Technology. Retrieved 2006-01-16.
  61. ^ Pappalardo, R T (1999). “Geology of the Icy Galilean Satellites: A Framework for Compositional Studies”. Brown University. Retrieved 2006-01-16.
  62. ^ Kargel, J. S. (1994). “Cryovolcanism on the icy satellites”. Earth, Moon, and Planets 67: 101–113. Bibcode 1995EM&P…67..101K. doi:10.1007/BF00613296.
  63. ^ Hawksett, David; Longstaff, Alan; Cooper, Keith; Clark, Stuart (2005). “10 Mysteries of the Solar System”. Astronomy Now 19: 65. Bibcode 2005AsNow..19h..65H.
  64. ^ Podolak, M.; Reynolds, R. T.; Young, R. (1990). “Post Voyager comparisons of the interiors of Uranus and Neptune”. Geophysical Research Letters (ISSN 0094-8276) 17 (10): 1737. Bibcode 1990GeoRL..17.1737P. doi:10.1029/GL017i010p01737
  65. ^ Duxbury, N. S., Brown, R. H. (1995). “The Plausibility of Boiling Geysers on Triton”. Beacon eSpace. Retrieved 2006-01-16.
  66. ^ Sekanina, Zdeněk (2001). “Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration?”. Publications of the Astronomical Institute of the Academy of Sciences of the Czech Republic 89: 78–93. Bibcode 2001PAICz..89…78S.
  67. ^ Królikowska, M. (2001). “A study of the original orbits of hyperbolic comets”. Astronomy & Astrophysics 376 (1): 316–324. Bibcode 2001A&A…376..316K. doi:10.1051/0004-6361:20010945.
  68. ^ Whipple, Fred L. (1992). “The activities of comets related to their aging and origin”. Celestial Mechanics and Dynamical Astronomy 54: 1–11. Bibcode 1992CeMDA..54….1W. doi:10.1007/BF00049540.
  69. ^ John Stansberry, Will Grundy, Mike Brown, Dale Cruikshank, John Spencer, David Trilling, Jean-Luc Margot (2007). “Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope”. The Solar System Beyond Neptune. pp. 161. arXiv:astro-ph/0702538. Bibcode 2008ssbn.book..161S
  70. ^ Patrick Vanouplines (1995). “Chiron biography”. Vrije Universitiet Brussel. Retrieved 2006-06-23.
  71. ^ a b Stephen C. Tegler (2007). “Kuiper Belt Objects: Physical Studies”. In Lucy-Ann McFadden et. al.. Encyclopedia of the Solar System. pp. 605–620.
  72. ^ a b Audrey Delsanti and David Jewitt (2006). “The Solar System Beyond The Planets” (PDF). Institute for Astronomy, University of Hawaii. Archived from the original on January 29, 2007. Retrieved 2007-01-03.
  73. ^ M. E. Brown, M. A. van Dam, A. H. Bouchez, D. Le Mignant, R. D. Campbell, J. C. Y. Chin, A. Conrad, S. K. Hartman, E. M. Johansson, R. E. Lafon, D. L. Rabinowitz, P. J. Stomski, Jr., D. M. Summers, C. A. Trujillo, and P. L. Wizinowich (2006). “Satellites of the Largest Kuiper Belt Objects”. Astrophysical Journal Letters 639: L43–L46. arXiv:astro-ph/0510029. Bibcode 2006ApJ…639L..43B. doi:10.1086/501524.
  74. ^ Chiang et al.; Jordan, A. B.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Elliot, J. L.; Kern, S. D.; Trilling, D. E. et al. (2003). “Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances”. The Astronomical Journal 126 (1): 430–443. Bibcode 2003AJ….126..430C. doi:10.1086/375207. Retrieved 2009-08-15.
  75. ^ M. W. Buie, R. L. Millis, L. H. Wasserman, J. L. Elliot, S. D. Kern, K. B. Clancy, E. I. Chiang, A. B. Jordan, K. J. Meech, R. M. Wagner, D. E. Trilling (2005). “Procedures, Resources and Selected Results of the Deep Ecliptic Survey”. Earth, Moon, and Planets 92 (1): 113. arXiv:astro-ph/0309251. Bibcode 2003EM&P…92..113B. doi:10.1023/B:MOON.0000031930.13823.be.
  76. ^ E. Dotto1, M. A. Barucci2, and M. Fulchignoni (2006-08-24). “Beyond Neptune, the new frontier of the Solar System” (PDF). Retrieved 2006-12-26.
  77. ^ Fajans, J.; L. Frièdland (October 2001). “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”. American Journal of Physics 69 (10): 1096–1102. doi:10.1119/1.1389278. Retrieved 2006-12-26.
  78. ^ a b “Dwarf Planets and their Systems”. Working Group for Planetary System Nomenclature (WGPSN). U.S. Geological Survey. 2008-11-07. Retrieved 2008-07-13.
  79. ^ Marc W. Buie (2008-04-05). “Orbit Fit and Astrometric record for 136472”. SwRI (Space Science Department). Retrieved 2008-07-13.
  80. ^ David Jewitt (2005). “The 1000 km Scale KBOs”. University of Hawaii. Retrieved 2006-07-16.
  81. ^ “List Of Centaurs and Scattered-Disk Objects”. IAU: Minor Planet Center. Retrieved 2007-04-02.
  82. ^ Michael E. Brown and Emily L. Schaller (2007). “The Mass of Dwarf Planet Eris”. Science 316 (5831): 1585. Bibcode 2007Sci…316.1585B. doi:10.1126/science.1139415. PMID 17569855.
  83. ^ Littmann, Mark (2004). Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. pp. 162–163. ISBN 9780486436029.
  84. ^ a b c Fahr, H. J.; Kausch, T.; Scherer, H. (2000). “A 5-fluid hydrodynamic approach to model the Solar System-interstellar medium interaction” (PDF). Astronomy & Astrophysics 357: 268. Bibcode 2000A&A…357..268F. See Figures 1 and 2.
  85. ^ NASA/JPL (2009). “Cassini’s Big Sky: The View from the Center of Our Solar System”. Retrieved 2009-12-20.
  86. ^ Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. (September 2005). “Voyager 1 explores the termination shock region and the heliosheath beyond”. Science 309 (5743): 2017–20. Bibcode 2005Sci…309.2017S. doi:10.1126/science.1117684. PMID 16179468.
  87. ^ Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. (July 2008). “An asymmetric solar wind termination shock”. Nature 454 (7200): 71–4. doi:10.1038/nature07022. PMID 18596802.
  88. ^ P. C. Frisch (University of Chicago) (June 24, 2002). “The Sun’s Heliosphere & Heliopause”. Astronomy Picture of the Day. Retrieved 2006-06-23.
  89. ^ “Voyager: Interstellar Mission”. NASA Jet Propulsion Laboratory. 2007. Retrieved 2008-05-08.
  90. ^ R. L. McNutt, Jr. et al. (2006). “Innovative Interstellar Explorer”. Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects. AIP Conference Proceedings. 858. pp. 341–347. Bibcode 2006AIPC..858..341M. doi:10.1063/1.2359348.
  91. ^ Anderson, Mark (2007-01-05). “Interstellar space, and step on it!”. New Scientist. Retrieved 2007-02-05.
  92. ^ Stern SA, Weissman PR. (2001). “Rapid collisional evolution of comets during the formation of the Oort cloud.”. Space Studies Department, Southwest Research Institute, Boulder, Colorado. Retrieved 2006-11-19.
  93. ^ Bill Arnett (2006). “The Kuiper Belt and the Oort Cloud”. nineplanets.org. Retrieved 2006-06-23.
  94. ^ David Jewitt (2004). “Sedna – 2003 VB12. University of Hawaii. Retrieved 2006-06-23.
  95. ^ Mike Brown. “Sedna”. CalTech. Retrieved 2007-05-02.
  96. ^ T. Encrenaz, JP. Bibring, M. Blanc, MA. Barucci, F. Roques, PH. Zarka (2004). The Solar System: Third edition. Springer. p. 1.
  97. ^ Durda D. D.; Stern S. A.; Colwell W. B.; Parker J. W.; Levison H. F.; Hassler D. M. (2004). “A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images”. Icarus 148: 312–315. Bibcode 2000Icar..148..312D. doi:10.1006/icar.2000.6520.
  98. ^ Hubble News Desk (2000). “Exposing the Stuff Between the Stars”. Press release. Retrieved 2007-05-10.
  99. ^ R. Drimmel, D. N. Spergel (2001). “Three Dimensional Structure of the Milky Way Disk”. Astrophysical Journal 556: 181–202. arXiv:astro-ph/0101259. Bibcode 2001ApJ…556..181D. doi:10.1086/321556.
  100. ^ Eisenhauer, F.; et al. (2003). “A Geometric Determination of the Distance to the Galactic Center”. Astrophysical Journal 597 (2): L121–L124. Bibcode 2003ApJ…597L.121E. doi:10.1086/380188.
  101. ^ Leong, Stacy (2002). “Period of the Sun’s Orbit around the Galaxy (Cosmic Year”. The Physics Factbook. Retrieved 2007-04-02.
  102. ^ C. Barbieri (2003). “Elementi di Astronomia e Astrofisica per il Corso di Ingegneria Aerospaziale V settimana”. IdealStars.com. Retrieved 2007-02-12.
  103. ^ a b Leslie Mullen (2001). “Galactic Habitable Zones”. Astrobiology Magazine. Retrieved 2006-06-23.
  104. ^ “Supernova Explosion May Have Caused Mammoth Extinction”. Physorg.com. 2005. Retrieved 2007-02-02.
  105. ^ “Near-Earth Supernovas”. NASA. Retrieved 2006-07-23.
  106. ^ “Stars within 10 light years”. SolStation. Retrieved 2007-04-02.
  107. ^ “Tau Ceti”. SolStation. Retrieved 2007-04-02.
  108. ^ “HUBBLE ZEROES IN ON NEAREST KNOWN EXOPLANET”. Hubblesite. 2006. Retrieved 2008-01-13.
  109. ^ The date is based on the oldest inclusions found to date in meteorites, and is thought to be the date of the formation of the first solid material in the collapsing nebula.
    A. Bouvier and M. Wadhwa. “The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion.” Nature Geoscience, in press, 2010. Doi: 10.1038/NGEO941
  110. ^ a b c “Lecture 13: The Nebular Theory of the origin of the Solar System”. University of Arizona. Retrieved 2006-12-27.
  111. ^ Irvine, W. M. (1983). “The chemical composition of the pre-solar nebula”. Cometary exploration; Proceedings of the International Conference. 1. pp. 3. Bibcode 1983coex….1….3I
  112. ^ Greaves, Jane S. (2005-01-07). “Disks Around Stars and the Growth of Planetary Systems”. Science 307 (5706): 68–71. Bibcode 2005Sci…307…68G. doi:10.1126/science.1101979. PMID 15637266.
  113. ^ “Present Understanding of the Origin of Planetary Systems”. National Academy of Sciences. 2000-04-05. Retrieved 2007-01-19.[dead link]
  114. ^ M. Momose, Y. Kitamura, S. Yokogawa, R. Kawabe, M. Tamura, S. Ida (2003). “Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a High-resolution Imaging Survey at lambda = 2 mm”. In Ikeuchi, S., Hearnshaw, J. and Hanawa, T. (eds.). The Proceedings of the IAU 8th Asian-Pacific Regional Meeting, Volume I. ASP Conference Series. 289. pp. 85. Bibcode 2003ASPC..289…85M.
  115. ^ Boss, A. P.; Durisen, R. H. (2005). “Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation”. The Astrophysical Journal 621 (2): L137. Bibcode 2005ApJ…621L.137B. doi:10.1086/429160.
  116. ^ Sukyoung Yi; Pierre Demarque; Yong-Cheol Kim; Young-Wook Lee; Chang H. Ree; Thibault Lejeune; Sydney Barnes (2001). “Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture”. Astrophysical Journal Supplement 136: 417. arXiv:astro-ph/0104292. Bibcode 2001ApJS..136..417Y. doi:10.1086/321795.
  117. ^ A. Chrysostomou, P. W. Lucas (2005). “The Formation of Stars”. Contemporary Physics 46 (1): 29. Bibcode 2005ConPh..46…29C. doi:10.1080/0010751042000275277.
  118. ^ Jeff Hecht (1994). “Science: Fiery future for planet Earth”. NewScientist. Retrieved 2007-10-29.
  119. ^ K. P. Schroder, Robert Cannon Smith (2008). “Distant future of the Sun and Earth revisited”. Monthly Notices of the Royal Astronomical Society 386 (1): 155–163. Bibcode 2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  120. ^ Pogge, Richard W. (1997). “The Once & Future Sun” (lecture notes). New Vistas in Astronomy. Archived from the original on May 27, 2005. Retrieved 2005-12-07.
  121. ^ Alessandro Morbidelli (2005). “Origin and dynamical evolution of comets and their reservoirs”. arXiv:astro-ph/0512256.
  122. ^ a b c “The Final IAU Resolution on the definition of “planet” ready for voting”. IAU. 2006-08-24. Retrieved 2007-03-02.
  123. ^ Ron Ekers. “IAU Planet Definition Committee”. International Astronomical Union. Retrieved 2008-10-13.
  124. ^ “Plutoid chosen as name for Solar System objects like Pluto”. International Astronomical Union. June 11, 2008, Paris. Retrieved 2008-06-11.
  125. ^ Reid, M.J.; Brunthaler, A. (2004 2004). “The Proper Motion of Sagittarius A*”. The Astrophysical Journal 616 (2): 883. Bibcode 2004ApJ…616..872R. doi:10.1086/424960.
  126. Wikipedia

Related Articles

Leave a Reply

Back to top button