معلوماتمنظر نامہ

Solar Energy

Solar energy

شمسی توانائی

 ۔

Solar Radiation Map of Africa and Middle East

انسانی زندگی کی نقل و حرکت کا خاصا انحصار توانائی پر ہے۔ آج جس بڑے پیمانے پر توانائی کا استعمال ہو رہا ہے اس سے خدشہ یہ ہے کہ توانائی کے ذخائر بہت دنوں تک ہمارا ساتھ نہیں دے سکیں گے۔ توانائی کے یہ ذخائر اور ذرائع ماحول کو بھی آلودہ کر رہے ہیں۔ ہمیں توانائی کے نئے متبادل تلاش کرنے ہوںگے تاکہ توانائی کے ساتھ ساتھ ماحول کو بھی آلودگی سے بچایا جاسکے اور یہ تبھی ممکن ہے جب ہم تیل، کوئلہ، لکڑی اور گوبر کے علاوہ دھوپ، ہوا، پانی اور دیگر توانائی کے قدرتی ذرائع کا استعمال کریں۔ مزید برآں شمسی توانائی جو کبھی نہ ختم ہونے والا ذریعہ ہے۔ روایتی توانائی کے ذرائع ہیں کوئلہ، معدنی تیل، لکڑی اور گوبر وغیرہ جب کہ غیر روایتی توانائی حاصل کرنے کے ذرائع ہیں شمسی توانائی، آبی یا موجی توانائی، ہوائی توانائی،پودوں سے پٹرول کشید کرکے توانائی حاصل کرنا، جوہری توانائی، بائیو گیس اور ارضی حرارتی توانائی۔ کوئلہ، معدنی تیل اور برقاب— توانائی حاصل کرنے کے تین اہم وسائل ہیں جن میں جوہری توانائی کا اضافہ ابھی حال میں ہوا ہے۔ کوئلہ توانائی کے حصول یا صنعتی ایندھن کا سب سے بڑا وسیلہ ہے۔ کوئلے کی تین قسمیں ہیں۔ اینتھرا سائیٹ، بِیٹُومینس، اور لگنائیٹ۔ ان سب میں سب سے عمدہ قسم اینھتراسائیٹ کی ہوتی ہے جس میں دھواں کم نکلتا ہے اور بہت گرمی دیتا ہے۔ دوسری قسم میں دھواں نسبتاً زیادہ نکلتا ہے مگر یہ بھی کافی گرمی دیتا ہے۔ تیسری قسم میں آنچ کم اور دھواں بہت ہوتا ہے۔ بجلی پیدا کرنے کے لیے ان کا استعمال کیا جاتا ہے۔ کوئلے کے علاوہ قدرتی تیل یا پٹرولیم توانائی حاصل کرنے کا دوسرا ذریعہ ہے۔ اور یہ نہایت کار آمد ایندھن بھی ہے۔ کچے قدرتی تیل سے ہمیں مٹی کا تیل، ڈیزل، پٹرول، اسپرٹ، کھانا پکانے کی گیس وغیرہ حاصل ہوتی ہے۔ ہماری روزانہ کی زندگی میں قدرتی تیل اور اس سے بنی ہوئی اشیا کی بہت ضرورت ہوتی ہے۔ اسکوٹر، موٹر سائیکل، کار، بسیں، ریل گاڑیاں، جہاز، ہوائی جہاز ملیں اور فیکٹریاں وغیرہ پٹرول اور ڈیزل سے چلتے ہیں۔ غرض یہ کہ قدرتی تیل یا پٹرولیم ہماری معاشی زندگی کی شہہ رگ ہے۔ زمین کی گہرائیوں میں حرارت کا بے شمار خزانہ دفن ہے۔ ماہرین ارضیات کے مطابق زمین کی اس پپڑی کے نیچے درجہ ¿ حرارت 7200oF یعنی 4000 سینٹی گریڈ ہے۔ حرارت اکثر آتش فشانو ںکے علاوہ زمین کے مختلف حصوں سے خارج ہونے والی بھاپ کی شکل میں بھی ظاہر ہوتی رہتی ہے۔ 1904 میں Geo-Thermal Energy کو کام میں لانے کا منصوبہ تیار کیا گیا تھا۔ زمین کے اندر کی بھاپ کو پائپ کے ذریعے چرخاب تک لایا گیا اور اس سے بجلی پیدا کی گئی۔ زمین اندر سے بہت گرم ہے اور اس میں جگہ جگہ پر گرم پانی کی دھار یا سوکھی بھاپ کی تیز دھار پھوٹتی رہتی ہے۔ اس حرارت کو اگر توانائی میں بدل دیا جائے تو ہزاروں سال تک توانائی کا مسئلہ حل ہو سکتا ہے۔کوئلہ سے پٹرول بنانے کا طریقہ جنوبی افریقہ میں شروع ہوا۔ وہاں کوئیلے کی کانیں وافر مقدار میں کوئلہ فراہم کر سکتی ہیں مگر یہ طریقہ بہت مہنگا ہے اور اس میں کوئلے کی کھپت بہت زیادہ ہوتی ہے۔کوڑا کرکٹ سے بھی توانائی پیدا کی جا سکتی ہے۔ ماہرین کے مطابق امریکہ میں سالانہ 25 کروڑ ٹن کوڑا پھینکا جاتا ہے۔ اس سے دس کروڑ ٹن کوئلے کے برابر توانائی حاصل کی جاسکتی ہے۔پودوں سے بھی پٹرول حاصل کیا جاتا ہے۔ ماہرین کی تحقیق کے مطابق گنے کے رس سے الکوہل (Alcohal) بنائی جاتی ہے اور اس الکوہل کو بطور پٹرول استعمال کرکے گاڑی چلائی جاسکتی ہے۔ دنیا بھر میں پودوں سے الکوہل کا سب سے زیادہ ایندھن پیدا کرنے والا ملک برازیل ہے solar-energyکیونکہ وہاں گنا بہت پیدا ہوتا ہے۔ اس تکنیک کا ہمارے ملک میں بھی استعمال ہورہا ہے۔ عہد حاضر کے سائنس داں سورج کی روشنی سے توانائی حاصل کرنے کے تجربات میں مصروف ہیں اور کافی حد تک انھیں کامیابی بھی حاصل ہوئی ہے۔ ہوا کی طاقت کا استعمال دنیا کے کچھ ممالک نے آٹے کی چکیوں کو چلاکر کیا ہے۔ بہتے ہوئے پانی کوباندھ کے ذریعے روک کر بہت اونچائی سے گرا کر بجلی پیدا کرتے ہیں۔ اگر سائنسی ترقی اسی رفتار سے ہوتی رہی تو وہ دن دور نہیں جب سورج کی روشنی سے طاقت حاصل کرکے ہر وہ کام کیا جائے گا جو آج قدرتی تیل سے ہو رہا ہے اور جس کے ذخائر محدود ہیں۔شمسی توانائی کبھی نہ ختم ہونے والی توانائی ہے۔

  شمسی توانائی

سورج کی دھوپ اپنے آپ میں آلودگی سے پاک ہے اور بہ آسانی میسر ہے۔ ہندوستان کو یہ سہولت حاصل ہے کہ سال کے 365 دنوں میں 250 سے لے کر 320 دنوں تک سورج کی پوری دھوپ ملتی رہتی ہے۔ دن میں سورج چاہے دس سے بارہ گھنٹے تک ہی ہمارے ساتھ رہے لیکن یہ حقیقت ہے کہ سورج کی گرمی ہمیں رات دن کے 24 گھنٹے حاصل ہو سکتی ہے۔ اس میں نہ دھواں ہے، نہ کثافت اور نہ ہی آلودگی۔ دیگر ذرائع سے حاصل توانائی کے مقابلے میں سورج کی روشنی سے 36 گنا زیادہ توانائی حاصل ہوسکتی ہے۔ جب کہ صورت حال یہ ہے کہ سورج کی روشنی کرنوں کی شکل میں صرف چوتھائی حصہ ہی زمین پر آتی ہے اور تین چوتھائی حصہ کرہ ¿ باد میں ہی رہ جاتی ہے۔سورج اپنی توانائی X-Ray سے لے کر Radio-Wave کے ہر Wave-Length پر منعکس کرتا ہے۔ اسپکٹرم (Spectrum) کے 40فیصد حصے پر یہ توانائی نظر آتی ہے اور 50 فیصد شمسی توانائی انفرا ریڈ (Infra-Red) اور بقیہ Ultra-Violet کی شکل میں نمودار ہوتی ہے۔دھوپ سے حاصل ہونے والی توانائی ”سولر انرجی“ یا ”شمسی توانائی“ کہلاتی ہے۔ دھوپ کی گرمی کو پانی سے بھاپ تیار کرکے جنریٹر چلانے اور بجلی بنانے میں بھی استعمال کیا جا سکتا ہے۔ دھوپ قدرت کا عطیہ ہے، ہر روز دنیا پر اتنی دھوپ پڑتی ہے کہ اس سے کئی ہفتوں کے لیے بجلی تیار کی جا سکتی ہے۔ سورج زمین سے تقریباً 15کروڑ کلومیٹر کے فاصلے پر واقع ہے۔ یہ زمین سے تیرہ لاکھ گنا بڑا ہے۔ چونکہ آفتاب میں صرف تپتی ہوئی گیس پائی جاتی ہے، اس لیے اس کی کثافت (Density) کم ہے۔ اس کا وزن زمین سے سوا تین لاکھ گنا زیادہ ہے۔ سورج کی باہری سطح کا درجہ ¿ حرارت تقریباً 6ہزار ڈگری سیلسیس ہے۔ اس کے مرکزی حصے کا درجہ ¿ حرارت ایک کروڑ ڈگری Celcius ہے۔ اس کے چاروں طرف روشنی اور حرارت نکلتی رہتی ہے۔ سورج کی سطح کے فی مربع سینٹی میٹر سے پچاس ہزار موم بتیوں جتنی روشنی نکلتی ہے اور زمین سورج سے نکلی ہوئی طاقت کا محض دوسو بیس کروڑواں حصہ ہی اخذکر پاتی ہے۔ شمسی توانائی کے بغیر زمین پر زندگی ممکن نہیں۔ سبز پتیوں والے پودے اس طاقت کا استعمال کرتے ہیں جس کے باعث ان میں Photosynthesis کا عمل ہوتا ہے۔

   استعمالات کے میدان

آج شمسی توانائی سے بہت سے کام لیے جا رہے ہیں۔ چاہے کھانا پکانا ہو، پانی گرم کرنا ہو یا مکانوں کو ٹھنڈا یا گرم رکھنا ہو۔ فصلوں کے دنوں میں دھان سکھانا ہو یا پائپوں کے ذریعے سینچائی۔ دہلی کے نزدیک گوالی پہاڑی میں سورج سے بجلی کی توانائی حاصل کرنے کے لیے ایک بجلی گھر بنایا گیا ہے جہاں پیداوار اور تحقیقی کام کیے جا رہے ہیں۔ solarملک کے دیگر حصوں میں Solar Photovoltaic Centres قائم کیے جا چکے ہیں جو ایک کلوواٹ سے ڈھائی کلوواٹ تک بجلی پیدا کرتے ہیں۔ گھروں، ڈیریوں، کارخانوں، ہوٹلوں اور اسپتالوں میں پانی گرم کرنے کے لیے ایسے آلات لگے ہیں جو 100 لیٹر سے لے کر سوا لاکھ لیٹر تک پانی گرم کر سکتے ہیں۔ شمسی چولھے کم سے کم دو کلو لکڑی کی بچت کر سکتے ہیں۔ ہندوستان میں اگر 17 کروڑ خاندان مان لیے جائیں تو روزانہ کم از کم 34 کروڑ کلو لکڑی کی بچت کی جا سکتی ہے۔ ان اقدامات کو دیکھتے ہوئے ہم یہ کہہ سکتے ہیں کہ ہمارا ملک غیرروایتی توانائی کے میدان میں داخل ہو چکا ہے اورتوانائی حاصل کرنے کا مستقبل اب دھوپ، سمندر کے پانی اور ایک قسم کی ایٹمی توانائی جو کہ Nuclear Fusion کہلاتی ہے، جیسے ذرائع سے وابستہ ہوتا جا رہاہے۔

Nellis Solar Power Plant in the United States, one of the largest photovoltaic power plants in North America.

Renewable energy
Wind Turbine
Biofuel
Biomass
Geothermal
Hydroelectricity
Solar energy
Tidal power
Wave power
Wind power
v · d · e

Solar energy, radiant light and heat from the sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar radiation, along with secondary solar-powered resources such as wind and wave power, hydroelectricity and biomass, account for most of the available renewable energy on earth. Only a minuscule fraction of the available solar energy is used.

Solar powered electrical generation relies on heat engines and photovoltaics. Solar energy’s uses are limited only by human ingenuity. A partial list of solar applications includes space heating and cooling through solar architecture, potable water via distillation and disinfection, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.To harvest the solar energy, the most common way is to use solar panels.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

Energy from the Sun

Main articles: Insolation and Solar radiation

About half the incoming solar energy reaches the Earth’s surface.

The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere.[1] Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth’s surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet.[2]

Earth’s land surface, oceans and atmosphere absorb solar radiation, and this raises their temperature. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth’s surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anti-cyclones.[3] Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C.[4] By photosynthesis green plants convert solar energy into chemical energy, which produces food, wood and the biomass from which fossil fuels are derived.[5]

Yearly Solar fluxes & Human Energy Consumption
Solar3,850,000 EJ[6]
Wind2,250 EJ[7]
Biomass3,000 EJ[8]
Primary energy use (2005)487 EJ[9]
Electricity (2005)56.7 EJ[10]

The total solar energy absorbed by Earth’s atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) per year.[6] In 2002, this was more energy in one hour than the world used in one year.[11][12] Photosynthesis captures approximately 3,000 EJ per year in biomass.[8] The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth’s non-renewable resources of coal, oil, natural gas, and mined uranium combined.[13]

Solar energy can be harnessed in different levels around the world. Depending on a geographical location the closer to the equator the more “potential” solar energy is available.[14]

Applications of solar technology

Average insolation showing land area (small black dots) required to replace the world primary energy supply with solar electricity. 18 TW is 568 Exajoule (EJ) per year. Insolation for most people is from 150 to 300 W/m2 or 3.5 to 7.0 kWh/m2/day.

Solar energy refers primarily to the use of solar radiation for practical ends. However, all renewable energies, other than geothermal and tidal, derive their energy from the sun.

Solar technologies are broadly characterized as either passive or active depending on the way they capture, convert and distribute sunlight. Active solar techniques use photovoltaic panels, pumps, and fans to convert sunlight into useful outputs. Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternate resources and are generally considered demand side technologies.[15]

Architecture and urban planning

Darmstadt University of Technology in Germany won the 2007 Solar Decathlon in Washington, D.C. with this passive house designed specifically for the humid and hot subtropical climate.[16]

Sunlight has influenced building design since the beginning of architectural history.[17] Advanced solar architecture and urban planning methods were first employed by the Greeks and Chinese, who oriented their buildings toward the south to provide light and warmth.[18]

The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass.[17] When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates’ Megaron House is a classic example of passive solar design.[17] The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package.[19] Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance.

Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical “cool communities” program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.[20]

Agriculture and horticulture

Greenhouses like these in the Westland municipality of the Netherlands grow vegetables, fruits and flowers.

Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields.[21][22] While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun.[23] Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure.[24][25] More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.[26]

Greenhouses convert solar light to heat, enabling year-round production and the growth (in enclosed environments) of specialty crops and other plants not naturally suited to the local climate. Primitive greenhouses were first used during Roman times to produce cucumbers year-round for the Roman emperor Tiberius.[27] The first modern greenhouses were built in Europe in the 16th century to keep exotic plants brought back from explorations abroad.[28] Greenhouses remain an important part of horticulture today, and plastic transparent materials have also been used to similar effect in polytunnels and row covers.

Solar lighting

Daylighting features such as this oculus at the top of the Pantheon, in Rome, Italy have been in use since antiquity.

The history of lighting is dominated by the use of natural light. The Romans recognized a right to light as early as the 6th century and English law echoed these judgments with the Prescription Act of 1832.[29][30] In the 20th century artificial lighting became the main source of interior illumination but daylighting techniques and hybrid solar lighting solutions are ways to reduce energy consumption.

Daylighting systems collect and distribute sunlight to provide interior illumination. This passive technology directly offsets energy use by replacing artificial lighting, and indirectly offsets non-solar energy use by reducing the need for air-conditioning.[31] Although difficult to quantify, the use of natural lighting also offers physiological and psychological benefits compared to artificial lighting.[31] Daylighting design implies careful selection of window types, sizes and orientation; exterior shading devices may be considered as well. Individual features include sawtooth roofs, clerestory windows, light shelves, skylights and light tubes. They may be incorporated into existing structures, but are most effective when integrated into a solar design package that accounts for factors such as glare, heat flux and time-of-use. When daylighting features are properly implemented they can reduce lighting-related energy requirements by 25%.[32]

Hybrid solar lighting is an active solar method of providing interior illumination. HSL systems collect sunlight using focusing mirrors that track the Sun and use optical fibers to transmit it inside the building to supplement conventional lighting. In single-story applications these systems are able to transmit 50% of the direct sunlight received.[33]

Solar lights that charge during the day and light up at dusk are a common sight along walkways.[34]

Although daylight saving time is promoted as a way to use sunlight to save energy, recent research has been limited and reports contradictory results: several studies report savings, but just as many suggest no effect or even a net loss, particularly when gasoline consumption is taken into account. Electricity use is greatly affected by geography, climate and economics, making it hard to generalize from single studies.[35]

Solar thermal

Main article: Solar thermal energy

Solar thermal technologies can be used for water heating, space heating, space cooling and process heat generation.[36]

Water heating

Solar water heaters facing the Sun to maximize gain.

Solar hot water systems use sunlight to heat water. In low geographical latitudes (below 40 degrees) from 60 to 70% of the domestic hot water use with temperatures up to 60 °C can be provided by solar heating systems.[37] The most common types of solar water heaters are evacuated tube collectors (44%) and glazed flat plate collectors (34%) generally used for domestic hot water; and unglazed plastic collectors (21%) used mainly to heat swimming pools.[38]

As of 2007, the total installed capacity of solar hot water systems is approximately 154 GW.[39] China is the world leader in their deployment with 70 GW installed as of 2006 and a long term goal of 210 GW by 2020.[40] Israel and Cyprus are the per capita leaders in the use of solar hot water systems with over 90% of homes using them.[41] In the United States, Canada and Australia heating swimming pools is the dominant application of solar hot water with an installed capacity of 18 GW as of 2005.[15]

Heating, cooling and ventilation

Solar House #1 of Massachusetts Institute of Technology in the United States, built in 1939, used seasonal thermal storage for year-round heating.

In the United States, heating, ventilation and air conditioning (HVAC) systems account for 30% (4.65 EJ) of the energy used in commercial buildings and nearly 50% (10.1 EJ) of the energy used in residential buildings.[32][42] Solar heating, cooling and ventilation technologies can be used to offset a portion of this energy.

Thermal mass is any material that can be used to store heat—heat from the Sun in the case of solar energy. Common thermal mass materials include stone, cement and water. Historically they have been used in arid climates or warm temperate regions to keep buildings cool by absorbing solar energy during the day and radiating stored heat to the cooler atmosphere at night. However they can be used in cold temperate areas to maintain warmth as well. The size and placement of thermal mass depend on several factors such as climate, daylighting and shading conditions. When properly incorporated, thermal mass maintains space temperatures in a comfortable range and reduces the need for auxiliary heating and cooling equipment.[43]

A solar chimney (or thermal chimney, in this context) is a passive solar ventilation system composed of a vertical shaft connecting the interior and exterior of a building. As the chimney warms, the air inside is heated causing an updraft that pulls air through the building. Performance can be improved by using glazing and thermal mass materials[44] in a way that mimics greenhouses.

Deciduous trees and plants have been promoted as a means of controlling solar heating and cooling. When planted on the southern side of a building, their leaves provide shade during the summer, while the bare limbs allow light to pass during the winter.[45] Since bare, leafless trees shade 1/3 to 1/2 of incident solar radiation, there is a balance between the benefits of summer shading and the corresponding loss of winter heating.[46] In climates with significant heating loads, deciduous trees should not be planted on the southern side of a building because they will interfere with winter solar availability. They can, however, be used on the east and west sides to provide a degree of summer shading without appreciably affecting winter solar gain.[47]

Water treatment

Solar water disinfection in Indonesia

Small scale solar powered sewerage treatment plant.

Solar distillation can be used to make saline or brackish water potable. The first recorded instance of this was by 16th century Arab alchemists.[48] A large-scale solar distillation project was first constructed in 1872 in the Chilean mining town of Las Salinas.[49] The plant, which had solar collection area of 4,700 m2, could produce up to 22,700 L per day and operated for 40 years.[49] Individual still designs include single-slope, double-slope (or greenhouse type), vertical, conical, inverted absorber, multi-wick, and multiple effect.[48] These stills can operate in passive, active, or hybrid modes. Double-slope stills are the most economical for decentralized domestic purposes, while active multiple effect units are more suitable for large-scale applications.[48]

Solar water disinfection (SODIS) involves exposing water-filled plastic polyethylene terephthalate (PET) bottles to sunlight for several hours.[50] Exposure times vary depending on weather and climate from a minimum of six hours to two days during fully overcast conditions.[51] It is recommended by the World Health Organization as a viable method for household water treatment and safe storage.[52] Over two million people in developing countries use this method for their daily drinking water.[51]

Solar energy may be used in a water stabilisation pond to treat waste water without chemicals or electricity. A further environmental advantage is that algae grow in such ponds and consume carbon dioxide in photosynthesis, although algae may produce toxic chemicals that make the water unusable.[53][54]

Cooking

Main article: Solar cooker

The Solar Bowl in Auroville, India, concentrates sunlight on a movable receiver to produce steam for cooking.

Solar cookers use sunlight for cooking, drying and pasteurization. They can be grouped into three broad categories: box cookers, panel cookers and reflector cookers.[55] The simplest solar cooker is the box cooker first built by Horace de Saussure in 1767.[56] A basic box cooker consists of an insulated container with a transparent lid. It can be used effectively with partially overcast skies and will typically reach temperatures of 90–150 °C.[57] Panel cookers use a reflective panel to direct sunlight onto an insulated container and reach temperatures comparable to box cookers. Reflector cookers use various concentrating geometries (dish, trough, Fresnel mirrors) to focus light on a cooking container. These cookers reach temperatures of 315 °C and above but require direct light to function properly and must be repositioned to track the Sun.[58]

The solar bowl is a concentrating technology employed by the Solar Kitchen in Auroville, Pondicherry, India, where a stationary spherical reflector focuses light along a line perpendicular to the sphere’s interior surface, and a computer control system moves the receiver to intersect this line. Steam is produced in the receiver at temperatures reaching 150 °C and then used for process heat in the kitchen.[59]

A reflector developed by Wolfgang Scheffler in 1986 is used in many solar kitchens. Scheffler reflectors are flexible parabolic dishes that combine aspects of trough and power tower concentrators. Polar tracking is used to follow the Sun’s daily course and the curvature of the reflector is adjusted for seasonal variations in the incident angle of sunlight. These reflectors can reach temperatures of 450–650 °C and have a fixed focal point, which simplifies cooking.[60] The world’s largest Scheffler reflector system in Abu Road, Rajasthan, India is capable of cooking up to 35,000 meals a day.[61] As of 2008, over 2,000 large Scheffler cookers had been built worldwide.[62]

Process heat

STEP parabolic dishes used for steam production and electrical generation.

Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one hour peak load thermal storage.[63]

Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams.[64]

Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the “right to dry” clothes.[65]

Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C and deliver outlet temperatures of 45–60 °C.[66] The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems.[66] As of 2003, over 80 systems with a combined collector area of 35,000 m2 had been installed worldwide, including an 860 m2 collector in Costa Rica used for drying coffee beans and a 1,300 m2 collector in Coimbatore, India used for drying marigolds.[25]

Electrical generation

Main article: Solar power

The PS10 concentrates sunlight from a field of heliostats on a central tower.

Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.

Commercial CSP plants were first developed in the 1980s, and the 354 MW SEGS CSP installation is the largest solar power plant in the world and is located in the Mojave Desert of California. Other large CSP plants include the Solnova Solar Power Station (150 MW) and the Andasol solar power station (100 MW), both in Spain. The 97 MW Sarnia Photovoltaic Power Plant in Canada, is the world’s largest photovoltaic plant.

Concentrated solar power

Parabolic solar troughs are the most widely deployed CSP technology.

Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.[67]

Photovoltaics

Main article: Photovoltaics

The 71.8 MW Lieberose Photovoltaic Park in Germany.

A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s.[68] In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide.[69] Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[70] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[71] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.[72]

Solar chemical

Main article: Solar chemical

Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical.[73] A variety of fuels can be produced by artificial photosynthesis.[74] The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen.[75] Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050- the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system.[76]

Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2300-2600 °C).[77] Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods.[78] Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1200 °C. This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.[79]

Sandia’s Sunshine to Petrol (S2P) technology uses the high temperatures generated by concentrating sunlight along with a zirconia/ferrite catalyst to break down atmospheric carbon dioxide into oxygen and carbon monoxide (CO). The carbon monoxide can then be used to synthesize conventional fuels such as methanol, gasoline and jet fuel.[80]

A photogalvanic device is a type of battery in which the cell solution (or equivalent) forms energy-rich chemical intermediates when illuminated. These energy-rich intermediates can potentially be stored and subsequently reacted at the electrodes to produce an electric potential. The ferric-thionine chemical cell is an example of this technology.[81]

Photoelectrochemical cells or PECs consist of a semiconductor, typically titanium dioxide or related titanates, immersed in an electrolyte. When the semiconductor is illuminated an electrical potential develops. There are two types of photoelectrochemical cells: photoelectric cells that convert light into electricity and photochemical cells that use light to drive chemical reactions such as electrolysis.[82]

A combination thermal/photochemical cell has also been proposed. The Stanford PETE process uses solar thermal energy to raise the temperature of a thermionic metal to about 800C to increase the rate of production of electricity to electrolyse atmospheric CO2 down to carbon or carbon monoxide which can then be used for fuel production, and the waste heat can be used as well.[83]

Solar vehicles

Australia hosts the World Solar Challenge where solar cars like the Nuna3 race through a 3,021 km (1,877 mi) course from Darwin to Adelaide.

Development of a solar powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner’s average speed was 67 kilometres per hour (42 mph) and by 2007 the winner’s average speed had improved to 90.87 kilometres per hour (56.46 mph).[84] The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.[85][86]

Some vehicles use solar panels for auxiliary power, such as for air conditioning, to keep the interior cool, thus reducing fuel consumption.[87][88]

In 1975, the first practical solar boat was constructed in England.[89] By 1995, passenger boats incorporating PV panels began appearing and are now used extensively.[90] In 1996, Kenichi Horie made the first solar powered crossing of the Pacific Ocean, and the sun21 catamaran made the first solar powered crossing of the Atlantic Ocean in the winter of 2006–2007.[91] There are plans to circumnavigate the globe in 2010.[92]

Helios UAV in solar powered flight.

In 1974, the unmanned AstroFlight Sunrise plane made the first solar flight. On 29 April 1979, the Solar Riser made the first flight in a solar powered, fully controlled, man carrying flying machine, reaching an altitude of 40 feet (12 m). In 1980, the Gossamer Penguin made the first piloted flights powered solely by photovoltaics. This was quickly followed by the Solar Challenger which crossed the English Channel in July 1981. In 1990 Eric Scott Raymond in 21 hops flew from California to North Carolina using solar power.[93] Developments then turned back to unmanned aerial vehicles (UAV) with the Pathfinder (1997) and subsequent designs, culminating in the Helios which set the altitude record for a non-rocket-propelled aircraft at 29,524 metres (96,864 ft) in 2001.[94] The Zephyr, developed by BAE Systems, is the latest in a line of record-breaking solar aircraft, making a 54-hour flight in 2007, and month-long flights are envisioned by 2010.[95]

A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.[96]

Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to exploit radiation pressure from the Sun. Unlike rockets, solar sails require no fuel. Although the thrust is small compared to rockets, it continues as long as the Sun shines onto the deployed sail and in the vacuum of space significant speeds can eventually be achieved.[97]

The High-altitude airship (HAA) is an unmanned, long-duration, lighter-than-air vehicle using helium gas for lift, and thin film solar cells for power. The United States Department of Defense Missile Defense Agency has contracted Lockheed Martin to construct it to enhance the Ballistic Missile Defense System (BMDS).[98] Airships have some advantages for solar-powered flight: they do not require power to remain aloft, and an airship’s envelope presents a large area to the Sun.

Energy storage methods

Solar Two’s thermal storage system generated electricity during cloudy weather and at night.

Solar energy is not available at night, and energy storage is an important issue because modern energy systems usually assume continuous availability of energy.[99]

Thermal mass systems can store solar energy in the form of heat at domestically useful temperatures for daily or seasonal durations. Thermal storage systems generally use readily available materials with high specific heat capacities such as water, earth and stone. Well-designed systems can lower peak demand, shift time-of-use to off-peak hours and reduce overall heating and cooling requirements.[100][101]

Phase change materials such as paraffin wax and Glauber’s salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C). The “Dover House” (in Dover, Massachusetts) was the first to use a Glauber’s salt heating system, in 1948.[102]

Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 TJ in its 68 m3 storage tank with an annual storage efficiency of about 99%.[103]

Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid, while standard grid electricity can be used to meet shortfalls. Net metering programs give household systems a credit for any electricity they deliver to the grid. This is often legally handled by ‘rolling back’ the meter whenever the home produces more electricity than it consumes. If the net electricity use is below zero, the utility is required to pay for the extra at the same rate as they charge consumers.[104] Other legal approaches involve the use of two meters, to measure electricity consumed vs. electricity produced. This is less common due to the increased installation cost of the second meter.

Pumped-storage hydroelectricity stores energy in the form of water pumped when energy is available from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water to run through a hydroelectric power generator.[105]

Development, deployment and economics

A parabolic dish and stirling engine system, which concentrates sunlight to produce useful solar power.

Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[106]

The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[107][108] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).[109]

Commercial solar water heaters began appearing in the United States in the 1890s.[110] These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels.[111] As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999.[39] Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.[39]

ISO Standards

The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.

Notes

  1. ^ Smil (1991), p. 240
  2. ^ “Natural Forcing of the Climate System”. Intergovernmental Panel on Climate Change. Retrieved 2007-09-29.
  3. ^ “Radiation Budget”. NASA Langley Research Center. 2006-10-17. Retrieved 2007-09-29.
  4. ^ Somerville, Richard. “Historical Overview of Climate Change Science” (PDF). Intergovernmental Panel on Climate Change. Retrieved 2007-09-29.
  5. ^ Vermass, Wim. “An Introduction to Photosynthesis and Its Applications”. Arizona State University. Retrieved 2007-09-29.
  6. ^ a b Smil (2006), p. 12
  7. ^ Archer, Cristina; Jacobson, Mark. “Evaluation of Global Wind Power”. Stanford. Retrieved 2008-06-03.
  8. ^ a b “Energy conversion by photosynthetic organisms”. Food and Agriculture Organization of the United Nations. Retrieved 2008-05-25.
  9. ^ “World Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980-2004”. Energy Information Administration. Retrieved 2008-05-17.
  10. ^ “World Total Net Electricity Consumption, 1980-2005”. Energy Information Administration. Retrieved 2008-05-25.
  11. ^ Solar energy: A new day dawning? retrieved 7 August 2008
  12. ^ Powering the Planet: Chemical challenges in solar energy utilization retrieved 7 August 2008
  13. ^ Exergy (available energy) Flow Charts 2.7 YJ solar energy each year for two billion years vs. 1.4 YJ non-renewable resources available once.
  14. ^ http://www.solarenergybyzip.com
  15. ^ a b Philibert, Cédric. “The Present and Future use of Solar Thermal Energy as a Primary Source of Energy” (PDF). International Energy Agency. Retrieved 2008-05-05.
  16. ^ “Darmstadt University of Technology solar decathlon home design”. Darmstadt University of Technology. Archived from the original on October 18, 2007. Retrieved 2008-04-25.
  17. ^ a b c Schittich (2003), p. 14
  18. ^ Butti and Perlin (1981), p. 4, 159
  19. ^ Balcomb(1992)
  20. ^ Rosenfeld, Arthur; Romm, Joseph; Akbari, Hashem; Lloyd, Alan. “Painting the Town White — and Green”. Heat Island Group. Retrieved 2007-09-29.
  21. ^ Jeffrey C. Silvertooth. “Row Spacing, Plant Population, and Yield Relationships”. University of Arizona. Retrieved 2008-06-24.
  22. ^ Kaul (2005), p. 169–174
  23. ^ Butti and Perlin (1981), p. 42–46
  24. ^ Bénard (1981), p. 347
  25. ^ a b Leon (2006), p. 62
  26. ^ “A Powerhouse Winery”. News Update. Novus Vinum. 2008-10-27. Retrieved 2008-11-05.
  27. ^ Butti and Perlin (1981), p. 19
  28. ^ Butti and Perlin (1981), p. 41
  29. ^ “Prescription Act (1872 Chapter 71 2 and 3 Will 4)”. Office of the Public Sector Information. Retrieved 2008-05-18.
  30. ^ Noyes, WM (1860-03-31). “The Law of Light” (PDF). The New York Times. Retrieved 2008-05-18.
  31. ^ a b Tzempelikos (2007), p. 369
  32. ^ a b Apte, J. et al.. “Future Advanced Windows for Zero-Energy Homes” (PDF). American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrieved 2008-04-09.
  33. ^ Muhs, Jeff. “Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems” (PDF). Oak Ridge National Laboratory. Archived from the original on 2007-09-26. Retrieved 2007-09-29.
  34. ^ Shienkopf, Ken (17 March 2001). “Solar Yard Lights Are Well Worth the Price”. Lakeland Ledger. Retrieved 3 July 2011.
  35. ^ Myriam B.C. Aries; Guy R. Newsham (2008). “Effect of daylight saving time on lighting energy use: a literature review”. Energy Policy 36 (6): 1858–1866. doi:10.1016/j.enpol.2007.05.021.
  36. ^ “Solar Energy Technologies and Applications”. Canadian Renewable Energy Network. Retrieved 2007-10-22.
  37. ^ “Renewables for Heating and Cooling” (PDF). International Energy Agency. Retrieved 2008-05-26.
  38. ^ Weiss, Werner; Bergmann, Irene; Faninger, Gerhard. “Solar Heat Worldwide (Markets and Contributions to the Energy Supply 2005)” (PDF). International Energy Agency. Retrieved 2008-05-30.
  39. ^ a b c Weiss, Werner; Bergmann, Irene; Faninger, Gerhard. “Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2006” (PDF). International Energy Agency. Retrieved 2008-06-09.
  40. ^ “Renewables 2007 Global Status Report” (PDF). Worldwatch Institute. Retrieved 2008-04-30.
  41. ^ Del Chiaro, Bernadette; Telleen-Lawton, Timothy. “Solar Water Heating (How California Can Reduce Its Dependence on Natural Gas)” (PDF). Environment California Research and Policy Center. Retrieved 2007-09-29.
  42. ^ “Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential” (PDF). United States Department of Energy. pp. 2–2. Retrieved 2008-06-24.
  43. ^ Mazria(1979), p. 29–35
  44. ^ Bright, David (18 February 1977). “Passive solar heating simpler for the average owner.”. Bangor Daily News. Retrieved 3 July 2011.
  45. ^ Mazria(1979), p. 255
  46. ^ Balcomb(1992), p. 56
  47. ^ Balcomb(1992), p. 57
  48. ^ a b c Tiwari (2003), p. 368–371
  49. ^ a b Daniels (1964), p. 6
  50. ^ “SODIS solar water disinfection”. EAWAG (The Swiss Federal Institute for Environmental Science and Technology). Retrieved 2008-05-02.
  51. ^ a b “Household Water Treatment Options in Developing Countries: Solar Disinfection (SODIS)” (PDF). Centers for Disease Control and Prevention. Archived from the original on 2008-05-29. Retrieved 2008-05-13.
  52. ^ “Household Water Treatment and Safe Storage”. World Health Organization. Retrieved 2008-05-02.
  53. ^ Shilton AN, Powell N, Mara DD, Craggs R (2008). “Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO(2) scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds”. Water Sci. Technol. 58 (1): 253–258. doi:10.2166/wst.2008.666. PMID 18653962.
  54. ^ Tadesse I, Isoaho SA, Green FB, Puhakka JA (2003). “Removal of organics and nutrients from tannery effluent by advanced integrated Wastewater Pond Systems technology”. Water Sci. Technol. 48 (2): 307–14. PMID 14510225.
  55. ^ Anderson and Palkovic (1994), p. xi
  56. ^ Butti and Perlin (1981), p. 54–59
  57. ^ Anderson and Palkovic (1994), p. xii
  58. ^ Anderson and Palkovic (1994), p. xiii
  59. ^ “The Solar Bowl”. Auroville Universal Township. Retrieved 2008-04-25.
  60. ^ “Scheffler-Reflector”. Solare Bruecke. Retrieved 2008-04-25.
  61. ^ “Solar Steam Cooking System”. Gadhia Solar. Archived from the original on November 11, 2007. Retrieved 2008-04-25.
  62. ^ “Scheffler Reflector”. Solare Bruecke. Retrieved 2008-07-03.
  63. ^ Stine, W B and Harrigan, R W. “Shenandoah Solar Total Energy Project”. John Wiley. Retrieved 2008-07-20.
  64. ^ Bartlett (1998), p.393–394
  65. ^ Thomson-Philbrook, Julia. “Right to Dry Legislation in New England and Other States”. Connecticut General Assembly. Retrieved 2008-05-27.
  66. ^ a b “Solar Buildings (Transpired Air Collectors – Ventilation Preheating)” (PDF). National Renewable Energy Laboratory. Retrieved 2007-09-29.
  67. ^ Martin and Goswami (2005), p. 45
  68. ^ Perlin (1999), p. 147
  69. ^ “”Magic Plates, Tap Sun For Power”, June 1931, Popular Science”. Books.google.com. Retrieved 2011-04-19.
  70. ^ Perlin (1999), p. 18–20
  71. ^ Perlin (1999), p. 29
  72. ^ Perlin (1999), p. 29–30, 38
  73. ^ Bolton (1977), p. 1
  74. ^ Wasielewski MR. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992; 92: 435-461.
  75. ^ Hammarstrom L and Hammes-Schiffer S. Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research 2009; 42 (12): 1859-1860.
  76. ^ Gray HB. Powering the planet with solar fuel. Nature Chemistry 2009; 1: 7.
  77. ^ Agrafiotis (2005), p. 409
  78. ^ Zedtwitz (2006), p. 1333
  79. ^ “Solar Energy Project at the Weizmann Institute Promises to Advance the use of Hydrogen Fuel”. Weizmann Institute of Science. Retrieved 2008-06-25.
  80. ^ “Sandia’s Sunshine to Petrol project seeks fuel from thin air”. Sandia Corporation. Retrieved 2008-05-02.
  81. ^ Bolton (1977), p. 16, 119
  82. ^ Bolton (1977), p. 11
  83. ^ http://spacefellowship.com/news/art21587/solar-power-could-soon-compete-with-oil.html
  84. ^ “The WORLD Solar Challenge – The Background” (PDF). Australian and New Zealand Solar Energy Society. Archived from the original on July 19, 2008. Retrieved 2008-08-05.
  85. ^ “North American Solar Challenge”. New Resources Group. Retrieved 2008-07-03.
  86. ^ “South African Solar Challenge”. Advanced Energy Foundation. Archived from the original on June 12, 2008. Retrieved 2008-07-03.
  87. ^ Vehicle auxiliary power applications for solar cells 1991 Retrieved 11 October 2008
  88. ^ systaic AG: Demand for Car Solar Roofs Skyrockets 26 June 2008 Retrieved 11 October 2008
  89. ^ Electrical Review Vol 201 No 7 12 August 1977
  90. ^ Schmidt, Theodor. “Solar Ships for the new Millennium”. TO Engineering. Retrieved 2007-09-30.
  91. ^ “The sun21 completes the first transatlantic crossing with a solar powered boat”. Transatlantic 21. Retrieved 2007-09-30.
  92. ^ “PlanetSolar, the first solar-powered round-the-world voyage”. PlanetSolar. Retrieved 2008-08-19.
  93. ^ Sunseeker Seeks New Records
  94. ^ “Solar-Power Research and Dryden”. NASA. Retrieved 2008-04-30.
  95. ^ “The NASA ERAST HALE UAV Program”. Greg Goebel. Retrieved 2008-04-30.
  96. ^ “Phenomena which affect a solar balloon”. pagesperso-orange.fr. Retrieved 2008-08-19.
  97. ^ “Solar Sails Could Send Spacecraft ‘Sailing’ Through Space”. National Aeronautics and Space Administration. Retrieved 2007-11-26.
  98. ^ “High Altitude Airship”. Lockheed Martin. Retrieved 2008-08-04.
  99. ^ Carr (1976), p. 85
  100. ^ Balcomb(1992), p. 6
  101. ^ “Request for Participation Summer 2005 Demand Shifting with Thermal Mass” (PDF). Demand Response Research Center. Retrieved 2007-11-26.
  102. ^ Butti and Perlin (1981), p. 212–214
  103. ^ “Advantages of Using Molten Salt”. Sandia National Laboratory. Retrieved 2007-09-29.
  104. ^ “PV Systems and Net Metering”. Department of Energy. Archived from the original on 2008-07-04. Retrieved 2008-07-31.
  105. ^ “Pumped Hydro Storage”. Electricity Storage Association. Retrieved 2008-07-31.
  106. ^ Butti and Perlin (1981), p. 63, 77, 101
  107. ^ Butti and Perlin (1981), p. 249
  108. ^ Yergin (1991), p. 634, 653-673
  109. ^ “Chronicle of Fraunhofer-Gesellschaft”. Fraunhofer-Gesellschaft. Retrieved 2007-11-04.
  110. ^ Butti and Perlin (1981), p. 117
  111. ^ Butti and Perlin (1981), p. 139

References

  • Agrafiotis, C.; Roeb, M.; Konstandopoulos, A.G.; Nalbandian, L.; Zaspalis, V.T.; Sattler, C.; Stobbe, P.; Steele, A.M. (2005). “Solar water splitting for hydrogen production with monolithic reactors”. Solar Energy 79 (4): 409–421. doi:10.1016/j.solener.2005.02.026.
  • Anderson, Lorraine; Palkovic, Rick (1994). Cooking with Sunshine (The Complete Guide to Solar Cuisine with 150 Easy Sun-Cooked Recipes). Marlowe & Company. ISBN 156924300X.
  • Balcomb, J. Douglas (1992). Passive Solar Buildings. Massachusetts Institute of Technology. ISBN 0262023415.
  • Bénard, C.; Gobin, D.; Gutierrez, M. (1981). “Experimental Results of a Latent-Heat Solar-Roof, Used for Breeding Chickens”. Solar Energy 26 (4): 347–359. doi:10.1016/0038-092X(81)90181-X.
  • Bolton, James (1977). Solar Power and Fuels. Academic Press, Inc.. ISBN 0121123502.
  • Bradford, Travis (2006). Solar Revolution: The Economic Transformation of the Global Energy Industry. MIT Press. ISBN 026202604X.
  • Butti, Ken; Perlin, John (1981). A Golden Thread (2500 Years of Solar Architecture and Technology). Van Nostrand Reinhold. ISBN 0442240058.
  • Carr, Donald E. (1976). Energy & the Earth Machine. W. W. Norton & Company. ISBN 0393064077.
  • Daniels, Farrington (1964). Direct Use of the Sun’s Energy. Ballantine Books. ISBN 0345259386.
  • Halacy, Daniel (1973). The Coming Age of Solar Energy. Harper and Row. ISBN 0380002337.
  • Hunt, V. Daniel (1979). Energy Dictionary. Van Nostrand Reinhold Company. ISBN 0442273959.
  • Karan, Kaul; Greer, Edith; Kasperbauer, Michael; Mahl, Catherine (2001). “Row Orientation Affects Fruit Yield in Field-Grown Okra”. Journal of Sustainable Agriculture 17 (2/3): 169–174. doi:10.1300/J064v17n02_14.
  • Leon, M.; Kumar, S. (2007). “Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors”. Solar Energy 81 (1): 62–75. doi:10.1016/j.solener.2006.06.017.
  • Lieth, Helmut; Whittaker, Robert (1975). Primary Productivity of the Biosphere. Springer-Verlag1. ISBN 0387070834.
  • Martin, Christopher L.; Goswami, D. Yogi (2005). Solar Energy Pocket Reference. International Solar Energy Society. ISBN 0977128202.
  • Mazria, Edward (1979). The Passive Solar Energy Book. Rondale Press. ISBN 0878572384.
  • Meier, Anton; Bonaldi, Enrico; Cella, Gian Mario; Lipinski, Wojciech; Wuillemin, Daniel (2005). “Solar chemical reactor technology for industrial production of lime”. Solar Energy 80 (10): 1355–1362. doi:10.1016/j.solener.2005.05.017.
  • Mills, David (2004). “Advances in solar thermal electricity technology”. Solar Energy 76 (1-3): 19–31. doi:10.1016/S0038-092X(03)00102-6.
  • Müller, Reto; Steinfeld, A. (2007). “Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide”. Solar Energy 81 (10): 1285–1294. doi:10.1016/j.solener.2006.12.006.
  • Perlin, John (1999). From Space to Earth (The Story of Solar Electricity). Harvard University Press. ISBN 0674010132.
  • Bartlett, Robert (1998). Solution Mining: Leaching and Fluid Recovery of Materials. Routledge. ISBN 9056996339.
  • Scheer, Hermann (2002). The Solar Economy (Renewable Energy for a Sustainable Global Future). Earthscan Publications Ltd. ISBN 1844070751.
  • Schittich, Christian (2003). Solar Architecture (Strategies Visions Concepts). Architektur-Dokumentation GmbH & Co. KG. ISBN 3764307471.
  • Smil, Vaclav (1991). General Energetics: Energy in the Biosphere and Civilization. Wiley. pp. 369. ISBN 0471629057.
  • Smil, Vaclav (2003). Energy at the Crossroads: Global Perspectives and Uncertainties. MIT Press. pp. 443. ISBN 0262194929.
  • Smil, Vaclav (2006-05-17) (PDF). Energy at the Crossroads. Organisation for Economic Co-operation and Development. ISBN 0262194929. Retrieved 2007-09-29.
  • Tabor, H. Z.; Doron, B. (1990). “The Beith Ha’Arava 5 MW(e) Solar Pond Power Plant (SPPP)–Progress Report”. Solar Energy 45 (4): 247–253. doi:10.1016/0038-092X(90)90093-R.
  • Tiwari, G. N.; Singh, H. N.; Tripathi, R. (2003). “Present status of solar distillation”. Solar Energy 75 (5): 367–373. doi:10.1016/j.solener.2003.07.005.
  • Tritt, T.; Böttner, H.; Chen, L. (2008). “Thermoelectrics: Direct Solar Thermal Energy Conversion”. MRS Bulletin 33 (4): 355–372.
  • Tzempelikos, Athanassios; Athienitis, Andreas K. (2007). “The impact of shading design and control on building cooling and lighting demand”. Solar Energy 81 (3): 369–382. doi:10.1016/j.solener.2006.06.015.
  • Vecchia, A.; Formisano, W.; Rosselli, V; Ruggi, D. (1981). “Possibilities for the Application of Solar Energy in the European Community Agriculture”. Solar Energy 26 (6): 479–489. doi:10.1016/0038-092X(81)90158-4.
  • Yergin, Daniel (1991). The Prize: The Epic Quest for Oil, Money, and Power. Simon & Schuster. pp. 885. ISBN 0671799320.
  • Zedtwitz, P.v.; Petrasch, J.; Trommer, D.; Steinfeld, A. (2006). “Hydrogen production via the solar thermal decarbonization of fossil fuels”. Solar Energy 80 (10): 1333–1337. doi:10.1016/j.solener.2005.06.007.
  • Wikipedia

Related Articles

Leave a Reply

Back to top button